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Preface

This book covers the necessary mathematics intended for students with ma-
jor in Economics. This course provides the fundamental mathematical back-
ground for studying Microeconomics, Macroeconomics, Statistics and other im-
portant topics in economics, or probabilistic or stochastic disciplines. The main
mathematical topics covered are Mathematical Analysis (Calculus), Probability
Theory, and Linear Algebra.

Most of the time, we avoid the rigorous mathematical proofs of our state-
ments. Instead, we rather present "justi�cations", which are intuitive, but not
necessarily precise. However, emphasis is placed on the correct formulations of
de�nitions.

The text is illustrated by a large number of examples. On the one hand, they
help the deeper understanding. On the other hand, they give an idea, how to
apply them in practical situations. Therefore, the thorough study of examples
is a profoundly important homework assignment. Each chapter covers one week
of the semester, on a one week � one chapter basis.

In the end of each chapter references are given to the Textbook , which should
be interpreted the following way.

Textbook-1: K. Sydsaeter and P. Hammond,Mathematics for Economic Anal-
ysis, Prentice Hall, 1995, ISBN 0�13�583600�X, or any of the later edi-
tions.

Textbook-2 R. E. Walpole, R. H. Myers, S. L. Myers and K. Ye Probability
and Statistics for Engineers and Scientists, Prentice Hall, 2012, ISBN:
978�0�321�62911�1, or any of the later editions.

These textbooks are widely used at most recognized universities worldwide.

Some of the indicated homework exercises refer to the Textbook. Most of the
midterm quiz or �nal exam problems are similar or identical to those exercises.
More problems and exercises with solutions are posted on my web site.

Special thanks to my colleagues Csaba Puskás, Éva Ernyes and Balázs
Fleiner, who read the manuscript, and their valuable remarks signi�cantly im-
proved the quality of the text. My thanks go to my former students as well,
their comments in or outside the classroom were extremely helpful for making
the text more understandable.

Budapest, September, 2020.

Peter Tallos
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Chapter 1

Sequences

1.1 Limits of sequences

The function
a : N→ R

de�ned on the set of natural numbers N is called a (in�nite) sequence.

We use the notation an for the n-th element.

Some examples: an = n, an = 1
n , an = n+1

n+2 .

De�nition 1.1 The sequence an is said to be convergent and tends to A, if
for any ε > 0, there exists an index N , such that,

|an −A| < ε.

whenever n ≥ N .

If the sequence is convergent then A is called the limit of the sequence an
and we write

lim
n→∞

an = A .

If there is no such real number A, then the sequence is called divergent.

Theorem 1.2 If the sequences an and bn are convergent and limn→∞ an = A
and limn→∞ bn = B then

• limn→∞(an ± bn) = A±B,

• limn→∞(an · bn) = A ·B,

• if B 6= 0, then limn→∞
an
bn

= A
B

11



12 CHAPTER 1. SEQUENCES

Example 1.3 Let us consider the sequence an = 1
n . For an arbitrary ε > 0

let N be any integer, greater than 1/ε. Then if n ≥ N

1

n
< ε ,

therefore, in view of De�nition 1.1

lim
n→∞

1

n
= 0 .

Example 1.4 In a similar way we can �nd the limits of other sequences. Let
us consider for example the sequence

an =
2n2 + 5

n2 − 6n+ 8
.

If we divide both the numerator and the denominator by n2, then we have

an =
2 + 5/n2

1− 6/n+ 8/n2
,

where the limit of the numerator is 2 and the limit of the denominator is 1.
Therefore

lim
n→∞

an = 2 .

Every irrational number can be written as a limit of a sequence of rational
numbers. For example, consider the sequence a1 = 1.4, a2 = 1.41, a3 =
1.414, a4 = 1.4142 . . . then

lim
n→∞

an =
√

2

Indeed, according to De�nition 1.1, if ε = 10−N , then |an −
√

2| < ε for n ≥ N .

A typical example for a sequence which has no limit is

an = (−1)n.

1.2 Sequences tending to in�nity

Let us investigate the sequence

an = 2n+ 5.
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The terms of this sequence are greater than any given number K if n is large
enough. In that case, we say, that the limit of the sequence is in�nity. We use
the symbol ∞ to denote in�nity.

De�nition 1.5 We say that the sequence an approaches +∞ if for any real
number K there exists an index N such that for every n ≥ N we have an > K
This is expressed in the formula

lim
n→∞

an = +∞ ,

In a completely analogous way we can de�ne the fact that a sequence ap-
proaches −∞, that is limn→∞ an = −∞.

1.3 Squeezing Theorem

Often the limit of a sequence can be determined with the aid of other sequences
the limits of which are known. Such a situation is described by the Squeezing
Theorem.

Theorem 1.6 (Squeezing Theorem) Let an, bn and cn be sequences such
that for every index n

an ≤ bn ≤ cn
holds and, moreover, the sequences an and cn converge to the same limit A.
Then the sequence bn is also convergent and limn→∞ bn = A.

Example 1.7 Let a > 1 be a real number and consider the sequence bn = n
√
a.

Since a > 1, the elements of the sequence can be written in the form

n
√
a = 1 + hn ,

where hn > 0 for every n. By the Binomial Theorem we get

a = (1 + hn)n > 1 + nhn .

where we skipped all other positive terms on the right-hand side. Rearranging
the inequality it follows that

0 < hn <
a− 1

n
.

The expression on the right-hand side tends to zero, hence, by the Squeezing
Theorem hn → 0, that is n

√
a→ 1.

Obviously, if 0 < a ≤ 1, then we can carry out the same argument, by taking
reciprocals of the elements of the sequence. This shows that our theorem holds
for any constant a > 0.
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1.4 Bounded and monotone sequences

Clearly, the elements of a sequence approaching in�nity cannot stay between
two real numbers. We introduce the following de�nition.

De�nition 1.8 The sequence an is bounded from above, if there is a real
number K such that an ≤ K for every index n. If there is a real number K
such that an ≥ K for every index n, the sequence is said to be bounded from
below. A sequence is called bounded if it is bounded both from above and from
below.

Example 1.9 Decide whether the sequence

an =
2n√

4n2 + 5 + 8

is bounded or not? Dividing both the numerator and the denominator by 2n
we get

an =
1√

1 + 5/4n2 + 8/2n
,

hence 0 ≤ an ≤ 1. Thus the sequence is bounded. It is also clear that the
smallest upper bound of the sequence is 1, while 0 is a lower bound, but not the
greatest one.

Monotone sequences have special importance.

De�nition 1.10 We say that the sequence an is monotone increasing, if
an ≤ an+1 for every index n. A decreasing sequence is de�ned similarly. A
sequence that is either increasing or decreasing is called monotone.

Example 1.11 Consider the sequence

an =
2n− 1

n+ 2
.

We have

an =
2n+ 4− 5

n+ 2
= 2− 5

n+ 2
.

The value of the fraction subtracted from 2 decreases if n increases, therefore
the sequence an is increasing. It is also clear that the sequence is bounded from
above and its smallest upper bound is 2. Moreover,

lim
n→∞

an = 2 .
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Our next theorem states that this property is characteristic for bounded
monotone sequences.

Theorem 1.12 An increasing sequence which is bounded from above is con-
vergent.

An analogous statement holds for decreasing sequences that are bounded
from below.

We do not prove this theorem, but we note it is based on the property of real
numbers that we always have a least upper bound (among the in�nitly many
upper bounds) which turns out to be the limit of the sequence.

Analogous theorem applies for monotone decreasing and bounded from below
sequences.

1.5 Euler's number e

In many applications of mathematics the sequence

an =

(
1 +

1

n

)n
. (1.1)

appears frequently. We can show that this sequence is monotone increasing,
bounded from above, and consequently convergent.

To verify these properties we exploit the inequality between the arithmetic
and geometric means. In particular, if x1, . . . , xn are positive numbers, then

x1 . . . xn ≤
(
x1 + . . .+ xn

n

)n
for every integer n. Equality holds if and only if x1 = . . . = xn that is, all the
numbers are equal.

Proposition 1.13 The sequence (1.1) is strictly monotone increasing and
bounded from above.

Proof. Let n be a given integer. Consider the n + 1 pieces of positive
numbers

x1 = 1 +
1

n
, . . . , xn = 1 +

1

n
, xn+1 = 1

which are not all equal. Using the inequality for the arithmetic and geometric
means, we have(

1 +
1

n

)n
<

(
n+ 1 + 1

n+ 1

)n+1

=

(
1 +

1

n+ 1

)n+1
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which exactly says that the sequence is strictly monotone increasing.

Second, consider the n+ 2 pieces of positive numbers

x1 = 1 +
1

n
, . . . , xn = 1 +

1

n
, xn+1 =

1

2
, xn+2 =

1

2

which are not all equal. Using the inequality again, we have

1

4
·
(

1 +
1

n

)n
<

(
n+ 1 + 1

n+ 2

)n+2

= 1

Rearranging the inequality we obtain an < 4, that means that the sequence is
bounded from above. Consequently, the sequence (1.1) is convergent. �

We use the notation e for the limit of this sequence. More elaborate compu-
tations show that e is irrational, and

e = 2.7182...

Proposition 1.14 Let α be an arbitrarily given real number. Then

lim
n→∞

(
1 +

α

n

)n
= eα

Example 1.15 Consider the sequence

an =

(
2n+ 1

2n+ 3

)n
Then, by rewriting the sequence we get

an =

(
2n+ 1

2n+ 3

)n
=

(
1 + 1/2

n

)n
(

1 + 3/2
n

)n → e1/2

e3/2

and hence limn→∞ an = e−1.

Study at home:

1. Careful study of Mathematical Analysis Exercises.

2. Study the exercises below.

3. Textbook-1, Chapter 1 and Section 6.4.



Chapter 2

In�nite Series

2.1 Series

De�nition 2.1 Let ak be a real in�nite sequence and compose the formal sum
∞∑
k=1

ak . (2.1)

This symbol is called an in�nite series (or just simply a series).

The meaning of this expression should be clari�ed, because only the addition
of �nitely many real numbers was de�ned so far.

For any natural number n de�ne the n-th partial sum of the series (2.1) as
follows:

Sn =

n∑
k=1

ak (2.2)

This way we created a real sequence Sn.

De�nition 2.2 The in�nite series (2.1) is said to be convergent and its sum
is S, if the sequence Sn is convergent and its limit is S. In this case we use the
notation:

S =

∞∑
k=1

ak

Otherwise the series is said to be divergent.

Please note that the in�nite series is divergent if the sequence Sn has no
limit or its limit is not �nite. For instance, if ak = (−1)k for all k then

Sn =

n∑
k=1

(−1)k = 0 if n is even and Sn =

n∑
k=1

(−1)k = −1 if n is odd

17



18 CHAPTER 2. INFINITE SERIES

therefore, the sequence Sn has no limit and the series is obviously divergent.

2.2 Geometric series

Example 2.3 (Geometric series) Let r be a real number and consider the
in�nite geometric series with common ratio r:

∞∑
k=0

rk

The nth partial sum of this series is

Sn =

n−1∑
k=0

rk =

{
1−rn
1−r if r 6= 1

n if r = 1

It is well known about the sequence an = rn that rn → 0 if |r| < 1, rn → 1
if r = 1 and otherwise the sequence is divergent. Therefore, we get that the
geometric series is convergent if and only if |r| < 1 and then its sum is given by

S =

∞∑
k=0

rk =
1

1− r

2.3 Convergence based on examining the partial

sums

Example 2.4 Consider the series

∞∑
k=2

1

k(k − 1)
. (2.3)

The terms of this series can be rewritten in this form:

1

k(k − 1)
=

1

k − 1
− 1

k

Observe that the n-th partial sum will be given like:

Sn = (1− 1/2) + (1/2− 1/3) + . . .+ (1/(n− 1)− 1/n) = 1− 1/n

The limit of this sequence is obviously 1 (the negative and positive identical
terms cancel each other) and we conclude that the series is convergent and its
sum is S = 1.
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Example 2.5 Try the apply the above argument for the series
∞∑
k=2

1

k3 − k

and by eliminating the terms that cancel each other, �nd the sum of the series.

2.4 Conditions for convergence

Theorem 2.6 (Necessary condition for convergence) Assume that the
series

∞∑
k=1

ak

is convergent. Then limk→∞ ak → 0.

Example 2.7 This theorem formulates a necessary condition which may not
be su�cient. For instance, we can show that the series hogy a

∞∑
k=1

1

k

ful�lls the necessary condition but it is divergent. This series is called the
Harmonic series.

Indeed, let an integer n be given, and consider the 2n-th partial sum of the
Harmonic series. Rearrange the terms in the following way

S2n = 1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+ . . .+

1

8

)
+ . . .+

(
1

2n−1 + 1
+ . . .+

1

2n

)
,

where every expression within the parentheses goes up to the next power of 2.
The sum of terms inside the parentheses is always bigger than 1/2, and we have
exactly n pairs of parentheses, hence

S2n > 1 +
1

2
n .

That tells us that sequence of partial sums is not bounded and therefore, the
series is divergent.

Theorem 2.8 (Su�cient condition for convergence) let us suppose that
for each index k we have ak ≥ 0 and the series

∞∑
k=1

ak
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is convergent. If for every index k we have 0 ≤ bk ≤ ak, then the series

∞∑
k=1

bk

is also convergent.

Indeed, on the one hand the sequence of partial sums Sn =
∑n
k=1 bk is

monotone increasing, and on the other hand it is also bounded. Consequently,
the series is convergent.

In an analogous way we may formulate a su�cient condition for divergence:
if all terms of a series are bigger than the nonnegative terms of a divergent
series, than it is divergent as well.

Example 2.9 As an application consider the series
∑∞
k=1 1/k2. Since for

every k > 1
1

k2
<

1

k(k − 1)

then for the n-th partial sums we get

Sn =

n∑
k=1

1

k2
< 1 +

n∑
k=2

1

k(k − 1)

According to the su�cient condition we conclude that this series is convergent,
and for its sum we have S < 2.

In general, it can be veri�ed that the series
∑∞
k=1 1/kα is divergent, if α ≤ 1,

and it is convergent if α > 1 (see more details in Chapter 9).

2.5 Absolute convergence

In this section we examine series that may contain positive and terms as well.
Consider the series

∞∑
k=1

ak (2.4)

where the terms ak are not necessarily all nonnegative.

De�nition 2.10 We say that the series (2.4) is absolutely convergent, if the
series

∞∑
k=1

|ak|

is convergent.
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Theorem 2.11 If a series is absolutely convergent, then it is convergent as
well.

We do not go into the details of the proof. As a justi�cation we note the
following. If Sn denotes the sum of the absolute values of the �rst n terms, then
by our condition it is convergent and

lim

n∑
k=1

|ak| = limSn = S .

Let Rn and Tn denote the sum of the negative and positive terms respectively
from the �rst n terms of the series

∑∞
k=1 ak. Then Rn is monotone decresing,

while Tn is monotone increasing, and both sequences are bounded, since

Rn ≥ −S and Tn ≤ S .

Therefore both sequences are convergent, in notation: limRn = R, and limTn =
T . Thus the limit of of Sn can be given as:

limSn = lim

n∑
k=1

ak = lim(Tn +Rn) = T +R ,

and we deduce that the series is really convergent.

The example below shows that the converse of our previous theorem is not
necessarily true.

Example 2.12 Consider the following series with alternating signs:

∞∑
k=1

(−1)k−1

k

Clearly, this series is not absolutely convergent, since the series with the absolute
values of the terms is identical to the Harmonic series, which is divergent.

We show however, that the series above is convergent. Indeed, the sum of
the terms with even indeces:

S2n =

(
1− 1

2

)
+

(
1

3
− 1

4

)
+ . . .+

(
1

2n− 1
− 1

2n

)
=

=
1

2
+

1

12
+ . . .+

1

2n(2n− 1)
.

In view of Example 2.3, this sequence is monotone increasing and bounded from
above, because S2n < 2. Hence, it is convergent. Denote its limit by

limS2n = S .
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On the other hand, for the sum of the terms with odd indeces we have

S2n−1 = S2n +
1

2n

therefore, limS2n−1 = S, which means that limSn = S. This implies that the
series is convergent.

2.6 Quotient-test

In this section we formulate a very useful su�cient condition for the convegence
or divergence of in�nite series. Create the absolute values of the quotients of
the consecutive terms of the series

∞∑
k=1

ak

and suppose that the limit

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = α

exists.

Theorem 2.13 (Quotient-test)

• If α < 1, then the series is absolutely convergent.

• If α > 1, then the series is divergent.

• If α = 1, then both cases can occur.

Proof. If α < 1, then choose a real number β with α < β < 1. Then from
a certain index N we have ∣∣∣∣ak+1

ak

∣∣∣∣ < β

for every k ≥ N . Then goin step-by-step backward we get

|ak+1| < β|ak| < β2|ak−1| < . . . < βk−N+1|aN |

So, for the n+ 1-th partial sum

Sn+1 =

n∑
k=0

|ak+1| <
N−1∑
k=0

|ak+1|+ |aN | ·
n∑

k=N

βk−N+1

where the last sum is the partial sum of a convergent series (in view of 0 < β <
1), and consequently bounded if n→∞. This proves the statement.
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If α > 1, then the the proof can be carried out similarly, with a choice of
1 < β < α we can come up with an estimate with a divergent geometric series.
�

Example 2.14 In this example we demonstrate that in the case of α = 1
nothing can be stated about the convergence of the series.

Indeed, if the divergent Harmonic series is considered, then for ak = 1/k we
have

ak+1

ak
=

k

k + 1
→ 1 if k →∞ .

However, if we take the convergent series, where ak = 1/k2, then

ak+1

ak
=

(
k

k + 1

)2

→ 1 if k →∞ ,

which demonstrates that both cases can occur.

Example 2.15 Find out if the series

∞∑
k=1

k2 · 2k

k!

is convergent or not. Use the Quotient-rule:

ak+1

ak
=

(k + 1)22k+1

(k + 1)!
· k!

k22k
= 2

(
k + 1

k

)2

· 1

k + 1
→ 0

Thus α = 0 < 1, which tells us that the series is convergent.

Study at home:

1. Review the "Mathematical Analysis Exercises"

2. Additional homework: check the exercises below

3. Textbook-1, Section 6.5.
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Chapter 3

Limits and continuity

3.1 Basic concepts

In the subsequent chapter we study the limit of functions f : R → R. Let x0
be a point (possibly equal to ±∞) for which there exists a sequence xn in the
domain of f such that xn 6= x0 and xn → x0.

De�nition 3.1 The limit of the function f at the point x0 is said to be A
(which can be ±∞) and in notation

lim
x→x0

f(x) = A

if for any sequence xn from the domain of f whenever xn → x0, xn 6= x0, then
f(xn)→ A.

ATTENTION!

Please note that the limit of f at x0 has nothing to do with f(x0). The
function may not even be de�ned at x0. However, in some cases the limit may
be equal to f(x0).

Theorem 3.2 If the functions f and g have limits at x0 and limx→x0
f(x) = A

and limx→x0
g(x) = B then

• limx→x0
(f ± g)(x) = A±B,

• limx→x0
(f · g)(x) = A ·B,

• if B 6= 0 then limx→x0

f
g (x) = A

B ,

• if A 6= 0 and B = 0 then limx→x0

f
g (x) = ±∞.

25
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Example 3.3 Determine the limit

lim
x→2

x2 − 4

x− 2
.

This function is not de�ned for x = 2 but it is equal to x+2 at any point x 6= 2.
Therefore it is easily seen that

lim
x→2

x2 − 4

x− 2
= lim
x→2

(x+ 2) = 4 .

Example 3.4 Consider the function f(x) = 1/x. This function is not de�ned
at x = 0. On the other hand, for any sequence xn > 0, xn → 0 from the domain
we have f(xn)→ +∞ while f(−xn)→ −∞. Thus this function has no limit at
x = 0, that is

lim
x→0

1

x

does not exist.

Example 3.5 Consider the following limit:

lim
x→+∞

2x4 − 5x3 + x− 8

8x3 − x2 + 12

Dividing both the numerator and denominator by x3 we get the expression

2x− 5 + 1/x2 − 8/x3

8− 1/x+ 12/x3
.

Now for any sequence xn → +∞ the limit of the numerator is +∞, while the
limit of the denominator equals 8, thus the fraction tends to +∞.

Very similarly, we can show that the limit of the fraction is −∞, if x→ −∞.

Example 3.6 Show that

lim
x→+∞

(
√

1 + x2 − x) = 0 .

Indeed, √
1 + x2 − x =

(√
1 + x2 − x

) √1 + x2 + x√
1 + x2 + x

=
1√

1 + x2 + x

and the expression on the right hand side approaches 0 if x→ +∞.
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3.2 Squeezing theorem

In this section we formulate the Squeezing theorem for limits of functions.

Theorem 3.7 (Squeezing Theorem) Let f , g and h be real functions such
that for any x

f(x) ≤ g(x) ≤ h(x)

and furthermore, limx→x0 f(x) = limx→x0 h(x) = A. Then the limit of the
function g at x0 exists, and

lim
x→x0

g(x) = A .

Example 3.8 Find the limit

lim
x→0

sinx

x

This is an even function, therefore it is enough to consider positive values of x. A
geometric interpretation (open the Figures �le!) shows that for all 0 < x < π/2

sinx < x < tanx .

Dividing this inequality by sinx, we get

1 <
x

sinx
<

1

cosx
.

By taking the reciprocals, we obtain

cosx <
sinx

x
< 1

for every 0 < x < π/2. In view of the Squeezing Theorem we receive

lim
x→0

sinx

x
= 1

3.3 One-sided limits

In some situations the limit of a function at a given point does not exist, but
we still can speak about a one-sided limit.

De�nition 3.9 We say that the right-hand limit of f at the point x0 exists
and is equal to

lim
x→x0+

f(x) = A
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if for any sequence xn → x0, xn > x0 from the domain of f we have f(xn)→ A.
The left-hand limit is de�ned analogously.

It is obvious from the de�nition that if at a point the limit exists, then both
one-sided limits exist, and they are equal.

Example 3.10 Consider the function:

f(x) =
2x+ 1

x− 2

It is easy to see that if xn approaches 2 from the right then f(xn)→ +∞, while
if xn approaches 2 from the left then f(xn)→ −∞. Therefore

lim
x→2−

f(x) = −∞ and lim
x→2+

f(x) = +∞ .

We can say that the limit of a function at a point exists if and only if both
one-sided limits exist, and they are equal (the common value is the limit).

3.4 Continuity

De�nition 3.11 Consider a function f that is de�ned on an interval. We say
that the function f is continuous at a point x0 of its domain if

lim
x→x0

f(x) = f(x0) .

If f is not continuous at a point x0 of its domain, then it is said that the function
has a discontinuity there.

A function is simply called continuous, if it is continuous at every point of
the domain.

ATTENTION!

Continuity is de�ned only at points in the domain of the function. For
instance the function f(x) = 1/x is continuous at each point of its domain, that
is at each x 6= 0. The point x0 = 0 is not in the domain of f , so we cannot
speak of discontinuity here.

On the other hand, f cannot be de�ned at x0 = 0 so that it becomes
continuous, as the limit of the function does not exist there.
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Functions obtained from continuous function by composition or by elemen-
tary operations (addition, subtraction, multiplication, division) are also con-
tinuous except maybe at points, where the denominator of the fraction equals
zero.

Example 3.12 For instance, consider the following function:

f(x) =

{
1−cos x
x2 if x 6= 0

1
2 if x = 0

It is clear that this function is continuous for all x 6= 0, furthermore

1− cosx

x2
=

1− cos2 x

(1 + cosx)x2
=

(
sinx

x

)2

· 1

1 + cosx
.

This shows that the limit of the function at 0 equals 1/2. Thus, this function is
continuous on the whole real line.

We think of a continuous function as one whose graph can be drawn by an
unbroken curve (without lifting the pencil from the paper). This is expressed
in Bolzano's theorem.

Theorem 3.13 (Bolzano) Let f be a continuous function on the �nite interval
[a, b], and suppose that f(a) and f(b) have di�erent signs. Then there exists a
point c ∈ (a, b) such that f(c) = 0.

We do not prove the theorem, but note that a simple idea would be bisecting
the interval, and selecting the part where f has opposite signs at the endpoints.
If we keep doing this in�nitely many times, we receive a sequence of intervals, so
that each one is the half of the preceding interval. We think that the intersection
of the intervals reduces to a single point, which is necessarily a zero of the
function.

Example 3.14 Prove that the equation

2x5 − 18x4 + 3x3 + 20x− 13 = 0

has at least one real solution. The expression on the left side of the equation
de�nes a continuous function f for which

lim
x→+∞

f(x) = +∞ and lim
x→−∞

f(x) = −∞ .

Therefore f is positive for su�ciently large values of x and takes negative values
if x is small enough. Therefore, by the Bolzano-theorem the equation has at least
one real solution.
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The following property of continuous functions is of fundamental importance
for extremum problems and optimization.

Theorem 3.15 (Weierstrass) Let f be a continuous function on the �nite
interval [a, b]. Then f takes its maximum and minimum on this interval.

We do not prove this theorem, but note that the function has to be bounded,
and there exists a lowest upper bound. It can be shown that the lowest upper
bound is the maximum of the function. A similar argument applies for the
minimum.

For example, the function

f(x) =

{
x if 0 ≤ x ≤ 1
3− x if 1 < x ≤ 2

does not reach its maximum value on the interval [0, 2], but as we see, it is not
continuous at 1.

Study at home:

• Textbook-1, read Sections 6.1, 6.2, 6.7, 7.1 and 7.2.

• Textbook-1, Exercises on pages 171�172, 177�178, 198, 202 and 205.

• Thourough study of "Mathematical Analysis Exercises" on my web site.



Chapter 4

Di�erentiation of functions

4.1 The derivative

Let f be a real function de�ned on an interval, and suppose that x0 is an interior
point of the interval.

De�nition 4.1 We say that f is di�erentiable at x0 if the following limit
exists and it is �nite:

lim
h→0

f(x0 + h)− f(x0)

h

This limit is called the derivative of f at the point x0, its notation is f ′(x0).
We say that the function f is di�erentiable in an interval, if it is di�erentiable
at every interior point of the interval.

The quotient above is called the di�erence quotient of f at the point x0.

Example 4.2 Consider the function f(x) = x2 on the real line. The di�erence
quotient at x0 is:

f(x0 + h)− f(x0)

h
=

(x0 + h)2 − x20
h

= 2x0 + h

whose limit is 2x0, if h→ 0. Consequently

f ′(x0) = 2x0 .

In a very similar way we can show that in the case of f(x) = xn (where n is an
integer),

f ′(x0) = nxn−10 .

In fact, use the identity

(x0 + h)n − xn0 = h((x0 + h)n−1 + (x0 + h)n−2 · x0 + . . .+ xn−10 )

31
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Theorem 4.3 If f di�erentiable at x, then it is continuous at x.

Proof. Let hn → 0, hn 6= 0 be a sequence, then by the di�erentiability

lim
n→∞

f(x+ hn)− f(x)

hn
= f ′(x) ,

which is �nite. This is only possible if limn→∞(f(x + hn) − f(x)) = 0, that is
limn→∞ f(x+ hn) = f(x). This exactly means that f is continuous at x. �

ATTENTION! The converse statement is not true in general, as it is demon-
strated by the following example

Example 4.4 Consider the function f(x) = |x| on the real line, and examine
its di�erence quotient at x0 = 0. It is clear that

f(h)− f(0)

h
=
|h|
h

=

{
1 if h > 0
−1 if h < 0

and therefore, the limit does not exist when h → 0, since the right-hand limit
is +1, while the left-hand limit is −1. Thus the function f is not di�erentiable
at x = 0

However, f is di�erentiable at any other point, in particular f ′(x) = 1, if
x > 0, and f ′(x) = −1, if x < 0.

4.2 Tangent lines

Geometric interpretation (see Figures.pdf) shows that f ′(x0) is the slope of the
tangent line to the graph of f at x0.

By using this observation, we can give the equation of the tangent line to
the graph of f that passes through the point P (x0, f(x0)):

y = f ′(x0)(x− x0) + f(x0) .

For instance, the equation of the tangent line to the graph of f(x) = x3 at
x0 = 1 is

y = 3(x− 1) + 1

Example 4.5 Find the equation of the tangent line to the graph of f(x) = sinx
at x0 = 0. On the one hand, the tangent line passes through the origin, on the
other hand, the slope is:

f ′(0) = lim
h→0

f(h)− f(0)

h
= lim
h→0

sinh

h
= 1 .

Therefore, the equation is y = x that intersects the graph at the origin.



4.3. RULES OF DIFFERENTIATION 33

4.3 Rules of di�erentiation

Consider the functions f and g, and assume that both are di�erentiable at x.
The rules below follow from the basic properties of limits.

Derivative of a sum If α and β real numbers, then αf(x) + βg(x) is di�er-
entiable at x and

(αf(x) + βg(x))′ = αf ′(x) + βg′(x) ,

Derivative of a product f(x) · g(x) is di�erentiable at x and

(f(x) · g(x))′ = f ′(x) · g(x) + f(x) · g′(x) ,

Derivative of a quotient if g(x) 6= 0, then f(x)/g(x) is di�erentiable at x,
and (

f(x)

g(x)

)′
=
f ′(x)g(x)− f(x)g′(x)

g(x)2
.

As an example let us see how we can prove the di�erentiability of the product:

f(x+ h) · g(x+ h)− f(x) · g(x)

h
=

f(x+ h) · g(x+ h)− f(x+ h) · g(x)

h
+

f(x+ h) · g(x)− f(x) · g(x)

h
=

f(x+ h)
g(x+ h)− g(x)

h
+ g(x)

f(x+ h)− f(x)

h

Here the limit of the �rst factor is f(x)g′(x) based on the continuity of f , while
the limit of the second factor is f ′(x)g(x), if h→ 0. That completes the proof.
The proofs of the other rules can be carried out in a very similar way.

Example 4.6 The tangent line to the graph of f(x) = 1/x taken at any point
encloses a triangle with the coordinate axes. (See Figures.pdf.) Show that the
area of this traingle is the same, no matter at what point the tangent line is
taken.

Because of the symmetry, it is enough to focus to points x0 > 0. By the
Quotient-rule

f ′(x0) = − 1

x20
hence, the equation of the tangent line taken at x0 is:

y = − 1

x20
(x− x0) +

1

x0

The intersection points with the coordinate axes are:
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if x = 0, then the intersection point on the y-axis is b = 2/x0

and similarly

if y = 0, then the intersection point on the x-axis is a = 2x0.

Thus, the are of the enclosed right triangle is

A =
1

2
ab =

1

2
· 2x0 ·

2

x0
= 2

which is independents of the choice of x0.

4.4 Composition of functions

Let f and g be both R→ R functions so that the range of g lies inside (subset)
the domain of f . Then the function

x→ f(g(x))

is called the composition of f and g. For this function we use the notetation
Jelölése f ◦ g, that is:

f ◦ g(x) = f(g(x)) .

For instance if f(x) =
√
x and g(x) = 1 + x2, then

f ◦ g(x) =
√

1 + x2 .

Attention, the order is important!

In general f ◦ g 6= g ◦ f . If we consider the example above, then

g ◦ f(x) = 1 + x

but this function is de�ned only for x ≥ 0!

It may even turn out that f ◦ g is de�ned on the nonnegative half line, but
g ◦ f is not de�ned anywhere. For instance, if

f(x) = −1− x4 and g(x) =
√
x ,

then f ◦ g(x) = −1 − x2, if x ≥ 0, but g ◦ f(x) =
√
−1− x4 is not de�ned for

any real number.
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4.5 Chain-Rule

Our theorem on the di�erentiability of composition functions is a very powerful
tool for calculating the derivatives of more complicated functions.

Theorem 4.7 (Chain-Rule) Suppose that g is di�erentiable at x, and f is
di�erentiable at g(x), then f ◦ g is di�erentiable at x, and its derivative is given
by

(f ◦ g)′(x) = f ′(g(x)) · g′(x)

If we introduce the notation k = g(x+h)−g(x), then the di�erence quotient
of the composition function f ◦ g at x can be written like:

f(g(x+ h))− f(g(x))

h
=

f(g(x) + k)− f(g(x))

k
· g(x+ h)− g(x)

h

provided g(x+h)−g(x) 6= 0. In the case of h→ 0, in view of the continuity of g,
we have k → 0, and consequently, the limit of the expression on the right-hand
is:

f ′(g(x)) · g′(x)

Unfortunately, this idea does not work when k = 0. In that case the proof is
somewhat more complicated, we do not go into the details of that situation.

Example 4.8 For example, consider the function

F (x) = (1 + 3x− x2)6 .

We can �nd the derivative without expanding the 6-th power, if we notice that
with the notations f(x) = x6 and g(x) = 1 + 3x − x2 we can write F = f ◦ g.
Therefore, by the Chain-Rule:

F ′(x) = 6(1 + 3x− x2)5 · (3− 2x) .

Example 4.9 Now �nd the derivative of

F (x) =

(
2x+ 3

5 + x2

)3

x ∈ R
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Then by using the notations

g(x) =
2x+ 3

5 + x2
and f(x) = x3

we get F = f ◦ g. Keep in mind that g is a quotient (use the Qutient-rule!), so
we obtain

F ′(x) = f ′(g(x)) · g′(x) = 3

(
2x+ 3

5 + x2

)2

· 2(5 + x2)− 2x(2x+ 3)

(5 + x2)2

that form can still be further simpli�ed if we wish.

Study at home:

1. Review the "Mathematical Analysis Exercises"

2. Review the Exercises below

3. Textbook-1, Chapter 4, Sections 5.2 and 5.6.



Chapter 5

The Mean Value Theorem

5.1 The inverse function

Consider a function f : R → R that is one-to-one on a given interval. In the
case of a continuous function this means that it is either strictly monotone
decreasing or strictly monotone increasing (in view of Bolzano's theorem, see
Theorem 3.13).

De�nition 5.1 The inverse of f is the function f−1 whose domain is the
range of f , its range is the domain of f , and further

f−1 ◦ f(x) = x

at every point in the domain of f .

This �reverse� correspondence can be obtained by taking the equality

y = f(x)

and isolate x as the function of y:

x = f−1(y) .

For instance, if f(x) = (2x+ 5)3, then we get

f−1(y) =
3
√
y − 5

2
.

Geometrically this means that the graphs of f−1 and of f are symmetric
with respect to the staight line y = x (that bisects the right angle at the origin).

37
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5.2 Di�erentiability of the inverse function

Theorem 5.2 Assume that f is continuous and strictly monotone on a given
interval, and it is di�erentiable at an interior pont x. Also suppose that f ′(x) 6=
0. Then f−1 is di�erentiable at y = f(x), and

(f−1)′(y) =
1

f ′(x)
.

Roughly, the situation is the following. Consider the di�erence quotient:

f−1(y + h)− f−1(y)

h

Let x and x + k be points in the domain of f such that y = f(x) and y + h =
f(x+ k). Then the di�erence quotient can be written in the following form:

x+ k − x
f(x+ k)− f(x)

=
1

f(x+k)−f(x)
k

If here h → 0, then k → 0 (ATTENTION, this is not trivial! It means the
continuity of f−1.), and hence, the limit of the fraction on the right-hand side
is really 1/f ′(x).

Example 5.3 Find the derivative of the function

g(x) = n
√
x

at a point x > 0. As we see, g is the inverse of the power function f(x) = xn

on the non-negative half line, that is g(y) = f−1(y). Thus,

g′(y) =
1

f ′(x)
=

1

nxn−1
=

1

n
· y 1

n−1

since y = xn and consequently

xn−1 = y
n−1
n

In view of this example we conclude that for every rational exponent r the
function F (x) = xr is di�erentiable at every point x > 0, and its derivative is:

F ′(x) = rxr−1 .
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Example 5.4 Calculate the derivative of the function

F (x) =
√

1 + x4

Set f(x) =
√
x and g(x) = 1 + x4, with these notations we have F = f ◦ g.

Making use of the Chain-Rule we get

F ′(x) = f ′(g(x)) · g′(x) =
4x3

2
√

1 + x4

5.3 The exponential and logarithm functions

Consider the exponential function with base e on the real line, and its inverse,
which is the logarithm function with base e (that is denoted by the symbol ln):

f(x) = ex f−1(x) = lnx (x > 0) .

They are called the natural exponential function, and the natural logarithm
function, respectively. Below we �nd their derivatives. We start with the equal-
ity

lim
x→±∞

(
1 +

1

x

)x
= e .

Find the derivative of the natural logarithm function at x0 = 1.

ln(1 + h)− ln 1

h
= ln(1 + h)1/h

whose common right-hand limit and left-hand limit at zero is ln e. (Here we
supposed the continuity of the logarithm function.) Therefore, the derivative is
1.

The derivative of f(x) = ex at the point 0 can be determined by exploiting
our theorem about the di�erentiability of the inverse function:

f ′(0) = lim
h→0

eh − 1

h
=

1

(ln)′(1)
= 1 .

This enables us to get the derivative of the exponential function at an arbitrary
point x:

f ′(x) = lim
h→0

ex+h − ex

h
= ex · lim

h→0

eh − 1

h
= ex

Using the di�erentiability of the inverse again, we obtain the derivative of the
logarithm function at any given point x > 0:

(f−1)′(x) =
1

eln x
=

1

x
.
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Example 5.5 As a straightforward application, �nd the derivative of the
function

f(x) = xα

at any given point x > 0, where α is an arbitrary real exponent. First we write:

f(x) = xα = eα ln x

Then, in view of the Chain-Rule we get

f ′(x) = α
1

x
eα ln x = α

1

x
xα = αxα−1

This tells us that the di�erentiation can be carried out the same way as in the
case of rational exponents.

5.4 Necessary condition for an extremum

Consider a function f : R→ R.

De�nition 5.6 We say that a point x0 in the domain of f is a (global)
minimum point, if f(x0) ≤ f(x) for every point x 6= x0 in the domain of f .

We say that a point x0 in the domain of f is a local minimum point, if there
exists a positive number ε > 0 such that f(x0) ≤ f(x) at every point in the
domain x with 0 < |x− x0| < ε.

In both cases we strict minimum points if strict inequalities apply.

We can formulate analogous de�nitions for maximum points.

It is obvious that a global minimum point is also a local minimum point.
The converse statement however, is not true in general, as it is shown in the
following example. For instance, the function

f(x) =

{
(x+ 1)2 ha x < 0
(x− 1)2 ha x ≥ 0

admits a local maximum at x = 0 (here the function is continuous, but not
di�erentiable, check it!) but this function does not have a global maximum,
since it is not bounded from above.

For di�erentiable functions we can present the following charcterization of
local extreme (minimum or maximum) points.

Theorem 5.7 Let us suppose that f is de�ned on an interval, at it is dif-
ferentiable at an interior point x0. If x0 is a local minimum point of f , then
f ′(x0) = 0.
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Proof. Indeed, consider the di�erence quotient:

f(x0 + h)− f(x0)

h
.

If h > 0, then the di�erence quotient for small values of h is non-negative,
and consequently, the right-hand limit is non-negative. On the other hand, if
h < 0, then similarly, the left-hand limit is non-positive. By the di�erentiability
assumption the di�erence quotient has a limit when h→ 0, which therefore, can
only be zero. Thus f ′(x0) = 0.

This theorem formulates only a necessary condition for minimum, which is
not su�cient! For example, the function f(x) = x3 has no extereme point at
x = 0, but f ′(0) = 0.

In the case of a di�erentiable function, those points x0 where f ′(x0) = 0, are
called critical (or sometimes stationary) points. Using this vocabulary, we may
say that the extreme points of a function are critical, the converese statement
is not necessarily true.

5.5 Lagrange's Mean Value Theorem

Based on the geometric interpretation, the Mean Value Theorem formulates a
very illustrative statement.

Theorem 5.8 Let f be continuous on the �nite closed interval [a, b], and
di�erentiable in the interior of the interval. Then there exists a point ξ ∈ (a, b)
so that

f ′(ξ) =
f(b)− f(a)

b− a

Proof. Introduce the function

g(x) = f(x)− f(a)− f(b)− f(a)

b− a
(x− a)

According to the assumptions, this function is continuous on the interval [a, b],
hence, by Weierstrass' Theorem (see Theorem 3.15) it achieves its minimum
and maximum in [a, b] intervallumon. At least one of the extreme points (either
the minimum, or the maximum) is in the interior of the interval, because

g(a) = g(b) = 0 .

If this interior extreme point is ξ ∈ (a, b), then by our previous theorem g′(ξ) =
0. This exactly means that

f ′(ξ)− f(b)− f(a)

b− a
= 0 .

Please observe, that the continuity assumption in our theorem is vital!
Sketch a �gure to show that!
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5.6 L'Hôpital's Rule

The procedure below makes it possible to compute complicated limits relatively
easily.

Let both f and g be di�erentiable, and their derivatives f ′ and g′ are con-
tinuous in a neighborhood of a point x0, and suppose that f(x0) = g(x0) = 0.
We want to �nd the limit

lim
x→x0

f(x)

g(x)

which is of the form 0/0 so �unde�ned�.

By the Mean Value Theorem

f(x)

g(x)
=

f(x)−f(x0)
x−x0

g(x)−g(x0)
x−x0

=
f ′(ξ)

g′(η)

where ξ and η are points between x and x0. Now if x→ x0, then both ξ → x0
and η → x0. Therefore, by the continuity of the derivative functions we get

lim
x→x0

f(x)

g(x)
= lim
x→x0

f ′(x)

g′(x)

This equality is called L'Hôpital's Rule. If the resulting limit still has the form
0/0, then apply L'Hôpital's Rule again until a "decent" limit is received.

Example 5.9 Find the following limit by using L'Hôpital's Rule:

lim
x→0

2 sinx

1−
√

1 + x

Taking the limits of the derivatives, we have:

lim
x→0

2 sinx

1−
√

1 + x
=

2 cos 0

− 1
2
√
1+0

= −4

Study at home:

1. Review of the exercises in "Mathematical Analysis Exercises"

2. Textbook-1, Sections 5.1, 5.4, 7.5 and 7.6, Chapter 8.



Chapter 6

Complete analysis of

functions

6.1 Monotone functions

De�nition 6.1 We say that f is monotone increasing on an interval, if for any
two points of the interval with x1 < x2 we have f(x1) ≤ f(x2). An analogous
de�niton applies for monotone decreasing functions.

We say that the function is strictly monotone (in either case), if we have
strict inequalities in the de�nition.

Theorem 6.2 Let f be continuous on a �nite closed interval [a, b], and dif-
ferentiable in its interior. If we have f ′(x) > 0 at every interior point of the
interval, then f is strictly monotone increasing on [a, b].

Indeed, if x1 < x2 are two arbitrary points of the interval [a, b], then by the
Lagrange's Mean Value Theorem there exists a point x1 < ξ < x2, such that

f(x2)− f(x1) = f ′(ξ)(x2 − x1) .

By our assumption the right-hand side is positive, therefore

f(x2)− f(x1) > 0

that means f is strictly monotone increasing on the interval.

Now, let us examine a function that is monotone increasing and di�erentiable
in an interval. For any two di�erent points x and x+ h in the interval we have:

f(x+ h)− f(x)

h
≥ 0

43



44 CHAPTER 6. COMPLETE ANALYSIS OF FUNCTIONS

regardless of h > 0 or h < 0. Passing to the limit h → 0 we obtain f ′(x) ≥ 0.
Thus, we can formulate the following theorem.

Theorem 6.3 Let f be continuous on the interval [a, b], and di�erentiable
in its interior. Then f is monotone increasing on the interval if and only if
f ′(x) ≥ 0 at each interior point of the interval.

A completely similar statement can be formulated for monotone decreasing
functions.

However, the assertion that if f is strictly monotone increasing, then we
would have f ′(x) > 0 for every interior point x is NOT TRUE. For example,
the function f(x) = x3 is strictly monotone increasing on the entire real line,
but f ′(0) = 0.

6.2 Finding extreme points

Consider a function f : R → R and pick an interior point x0 in the domain.
Suppose that f is di�erentiable at x0.

As we have seen, the necessary condition for x0 for being an extreme point
is f ′(x0) = 0. The question is, how we can formulate a su�cient condition
for really having an extremum at x0. It is easy to see that if there exists
a positive number ε > 0 so that f is monotone decreasing on the interval
[x0− ε, x0], moreover f is monotone increasing on the interval [x0, x0 + ε], then
x0 is de�nitely a local minimum point f lokális.

For di�erentiable functions we can summarize this observation in the follow-
ing theorem.

Theorem 6.4 Assume that f is di�erentiable in an interval, and x0 is an
interior point of the interval. If there exists a positive number ε > 0, so that

• f ′(x) ≤ 0 , if x ∈ (x0 − ε, x0)

• f ′(x) ≥ 0 , if x ∈ (x0, x0 + ε)

then x0 is a local minimum point of f .

Obviously, an analogous statement can be formulated for the case of local
maximum as well.

Example 6.5 Find the extreme points and the intervals of monotonicity of
the function

f(x) = x2e−x
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By the Product-Rule, the derivative is:

f ′(x) = (2x− x2)e−x

whose sign depends exclusively on the �rst factor (the second is positive). Con-
sequently:

• If x ∈ (−∞, 0), then f ′(x) < 0, so f is monotone decreasing.

• If x = 0, then f ′(0) = 0, this is a critical point.

• If x ∈ (0, 2), then f ′(x) > 0, so f is monotone increasing.

• If x = 2, then f ′(2) = 0, this is another critical point.

• If x ∈ (2,+∞), then f ′(x) < 0, so f is monotone decreasing.

By the changing the signs of f ′ we can conclude that x = 0 is a minimum point
(global), while x = 2 is a local maximum point.

Example 6.6 Consider the following function on the real line:

f(x) = x+ sinx

Since f ′(x) = 1 + cosx, it is clear that function has critical points at

x = (2k + 1)π k = 0,±1,±2, . . .

However, none of them is an extremum:

x 6= (2k + 1)π then f ′(x) > 0 ,

because cosx > −1. This means that the derivative does not change its sign.
In fact, this function is strictly monotone increasing on the entire real line.

6.3 Higher order derivatives

If a function f is di�erentiable in a given interval, then the correspondence
x→ f ′(x) is called the derivative function of f . If f ′ is again di�erentiable at a
given point x0, then we say that f is twice di�erentiable at this point. Instead
of using the complicated notation (f ′)′(x0), we use the brief formula

f ′′(x0)

and this is called the second derivative of f at x0.
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In a completely similar way, if n is a given integer, we can de�ne the n-the
derivative of the function f at x0, and its notation is

f (n)(x0) .

For instance, for the function f(x) = 1/x at any given point x0 6= 0 we have

f ′′(x0) =
2

x30
and f (n)(x0) =

(−1)nn!

xn+1

for every integer n.

Example 6.7 Consider the function f(x) = sinx, and �nd its derivative
function.

f ′(x) = lim
h→0

sin(x+ h)− sinx

h
= lim
h→0

sinx cosh+ cosx sinh− sinx

h

= sinx · lim
h→0

cosh− 1

h
+ cosx · lim

h→0

sinh

h

In view of Example 3.12 the �rst limit is 0, and in view of Example 3.8 the
second limit is 1. Therefore,

f ′(x) = cosx

By using the identity cosx = sin(x+ π/2) and the Chain-Rule, we have

(cosx)′ = cos(x+ π/2) = − sinx

Therefore, the higher order derivatives of f(x) = sinx can be given in terms of
the divisibility by 4:

f (n)(x) =


cosx if n = 4k + 1
− sinx if n = 4k + 2
− cosx if n = 4k + 3

sinx if n is divisible by 4

6.4 Second order conditions

It may happen that we analyze a function, where the sign of its derivative is
not easy to determine (for instance a higher degree polynomial). In a case like
that, the second order (su�cient) condition proves to be useful.

Theorem 6.8 Let f be di�erentiable in an interval, and suppose that f is
twice di�erentiable at an interior point x0.

If f ′(x0) = 0 and f ′′(x0) > 0, then x0 is a local minimum point of f .
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Proof. Indeed, by examining the di�erent quotient we get

f ′′(x0) = lim
h→0

f ′(x0 + h)− f ′(x0)

h
=

= lim
h→0

f ′(x0 + h)

h
> 0

This means that the quotient f ′(x0 + h)/h is positive for 0 < |h| < ε for some
ε > 0. This implies that

• if x ∈ (x0 − ε, x0), then f ′(x) < 0,

• if x ∈ (x0, x0 + ε), then f ′(x) > 0.

Making use of Theorem 6.4 we conclude that x0 is really a local minimum point.

We can formulate an analogous second order su�cient condition for the case
of local naximum.

By using proof by contradiction, we get the second order necessary condition
for an extremum point.

Theorem 6.9 Assume that f is twice di�erentiable in an interval, and let x0
be an interior point of the interval.

• If x0 is a local minimum point, then f ′(x0) = 0, and f ′′(x0) ≥ 0.

• If x0 is a local maximum point, then f ′(x0) = 0, and f ′′(x0) ≤ 0.

Example 6.10 For x > 0 consider the function

f(x) = x lnx

Then f ′(x) = 1 + lnx, therefore, the only critical point of f is x = 1/e. On the
other hand f ′′(x) = 1/x, so we have

f ′′(1/e) = e > 0 ,

Thus, x = 1/e is a local minimum point of f . (It is not hard to verify that this
is a global minimum point as well.)

Please observe that our theorems provide no information for a critical point
x0 with

f ′′(x0) = 0 .

The reason that in this �marginal� situation anything can happen. For example,
examine the behavior of the functions

f(x) = xn (n ≥ 3)

at the critical point x0 = 0. On the one hand, here f ′(0) = 0 and f ′′(0) = 0.
On the other hand
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• if n is even, then x0 = 0 is (global) minimum point,

• if n is odd, then x0 = 0 is not an extremum point (so-called saddle point).

Very similarly, if n is even, then x0 = 0 is a (global) maximum point of −f .

6.5 Convex and concave functions

De�nition 6.11 The function f is said to be convex on the interval [a, b], if for
any two points x1 and x2 from the interval, and for any real number 0 ≤ α ≤ 1

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2) .

The geometric meaning of this de�nition is that any cord to the graph (i.e.
a segment that connects two points on the graph) can nowhere be below the
graph of the function.

Concave functions are de�ned by the opposite inequality.

We now give a simple characterization of convexity for twice di�erentiable
functions.

Theorem 6.12 Assume that f is continuous on a closed interval, and twice
di�erentiable in the interior. The necessary and su�cient condition for the
convexity of f is:

f ′′(x) ≥ 0

at every interior point of the interval.

In particular, this means that for convex functions the slope of the tangent
line (i.e. the derivative) is monotone increasing. Geometrically this can be
illustrated by the fact that the graph of the function is nowhere below the
tangent line.

Example 6.13 Give a complete analysis of the function

f(x) =
x

1 + x2

First we calculate the derivative:

f ′(x) =
1− x2

(1 + x2)2
.

By examining the sign of the derivative, we come up with the following summary:
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• f is strictly monotone decreasing on the interval (−∞,−1)

• x = −1 is a (global) minimum point

• f is strictly monotone increasing on the interval (−1, 1)

• x = 1 is a (global) maximum point

• f is strictly monotone decreasing on the interval (1,+∞).

The convexity is investigated by specifying the sign of the second derivative:

f ′′(x) =
2x3 − 6x

(1 + x2)3

Obviously, the denominator is positive, so it is enough to �nd the sign of the
numerator:

2x3 − 6x = 2x(x2 − 3)

By examining the factors we come up with the following summary:

• f is concave on the interval (−∞,−
√

3)

• f is convex on the interval (−
√

3, 0)

• f is concave on the interval (0,
√

3)

• f is convex on the interval (
√

3,+∞).

Please notice that we have f ′′(−
√

3) = f ′′(0) = f ′′(
√

3) = 0, and the second
derivative changes the sign at those points. In other words those points separate
the convex and concave segments of the function. Such point are called the
points of in�ection of f . At a point of in�ection the tangent line intersects the
graph of the function.

Probably the most important property of convex function is that every local
minimum point is a global minimum point as well.

Theorem 6.14 Consider a twice di�erentiable convex function f on an in-
terval, and let x0 be an interior point of the interval. If x0 is a local minimum
point, then it is a global minimum point.

Proof. Indeed, on the one hand f ′(x0) = 0, on the other hand f ′ is monotone
increasing. Therefore, at every interior point x0:

• if x < x0, then f ′(x) ≤ 0, and hence, f(x) ≥ f(x0),

• if x > x0, then f ′(x) ≥ 0, and hence, f(x) ≥ f(x0).
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This proves our statement.

A completely analogous theorem can be formulated for concave functions
and maximum points.

Example 6.15 De�ne the function f for x > 0 on the positive half line:

f(x) = ax+ 2 lnx

where a is an unspeci�ed parameter. For what value of a will f possess a global
maximum point at x = 6?

By the necessary condition for an extremum

f ′(x) = a+
2

x
= 0

that yields x = −2/a. By the condition x = 6, we get a = −1/3. The second
derivative of f is:

f ′′(x) = − 1

x2
< 0 ,

therefore the function is concave on the whole domain. Consequently, for the
parameter a = −1/3 the function f has a global maximum point at x = 6.

Study at home:

1. Careful review of the "Mathematical Analysis Exercises"

2. Textbook-1: Chapter 9.
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Integration

7.1 The inde�nite integral

De�nition 7.1 Let f be a function de�ned on an interval I. A di�erentiable
function F de�ned on I is called the inde�nite integral of f , or sometimes its
primitive function, if

F ′(x) = f(x)

for every x ∈ I.

It is clear that taking the inde�nite integral is the reverse operation of dif-
ferentiation. It is important to note that the inde�nite integral is not unique!
Indeed, if F is the inde�nite integral of a function f , then by adding a constant
C to F we again have an inde�nite integral:

(F (x) + C)′ = F ′(x) = f(x)

for every x ∈ I.
We show that this is the only way to create other inde�nite integrals.

Theorem 7.2 If F is an ide�nite integral of f on the interval I, then any
inde�nite integral of f can be given in the form F +C, where C is a constant.

Proof. Indeed, if the di�erentiable function G is an inde�nite integral of f
on the interval I, then at every point x ∈ I we have

(F (x)−G(x))′ = f(x)− f(x) = 0

This means that the derivative of F − G is zero on I. By the Mean Value
Theorem we get that F −G is constant on the interval.

51
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In view of our theorem, we use the following notation for inde�nite integrals:∫
f(x) dx = F (x) + C

For instance, by simple di�erentiation we can verify∫
cosx dx = sinx+ C

or very similarly ∫
xα dx =

xα+1

α+ 1
+ C (α 6= −1)

where C is an arbitrary constant. If a function has an inde�nite integral on an
interval, then there are in�nitely many of them.

7.2 Basic integrals

The following rule can be useful for �nding inde�nite integrals:

Theorem 7.3
∫

(αf(x) + βg(x)) dx = α
∫
f(x) dx+ β

∫
g(x) dx

This rule can be extended to any sums with �nitely many terms.

ATTENTION: Not all functions have inde�nite integrals. For example, a
function f with a point of discontinuity, where the one-sided limits exist, they
are �nite, but not equal, cannot possess an inde�nite integral. The following
theorem formulates a useful su�cient condition for the existence of the inde�nite
integral.

Theorem 7.4 If f is continuous on the interval I, then it has an inde�ninite
integral.

We can easily create rules for �nding inde�nite integrals by reversing the dif-
ferentiation rules. By taking the opposites of di�erentiation rules for elementary
functions, we obtain rules for �nding inde�nite integrals.

In general, any formula for an inde�nite integral can be veri�ed by direct
di�erentiation. For example:∫

sinx dx = − cosx+ C∫
(2x2 − 5x+ 8) dx =

2

3
x3 − 5

2
x2 + 8x+ C∫

e2x−1 dx =
1

2
e2x−1 + C∫

2x

1 + x2
dx = ln(1 + x2) + C
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7.3 Initial value problems

As we have seen, a function can have in�nitely many inde�nite integrals (if any
exists), and they di�er only in an additive constant. However, if �x a point
in the coordinate system, and looking only for a de�nite integral that passes
through the given point, then the solution of the problem may be unique.

Example 7.5 Find the function F for which

F ′(x) = 2e−x and F (0) = 1

In this case we are looking for a speci�c inde�nite integral

F (x) = 2

∫
e−x dx = −2e−x + C

so that F (0) = 1. The condition implies C = 3, and this is the only solution.

7.4 De�nite integrals

In this section we brie�y outline how Berhard Riemann, professor of mathemat-
ics at University of Göttingen (Germany) introduced the concept of integration
in the 19-th century. The idea is based on the two-sided approximation devel-
oped Archimedes, the ancient greek mathematician. This idea is a fundamental
element of human thinking, and this is how Archimedes determined the area of
the circle in Syracuse, using the areas of approximating polygons from inside
and outside.

Let f be a continuous function on the �nite interval [a, b], and consider the
partition of the interval into n subintervals by using the points

a = x0 < x1 < . . . < xn = b

On every subinterval [xk−1, xk] let mk denote minimum value of f , and let
Mk denote the maximum value of f . Those extreme values exist by virtue of
Weierstrass' theorem (see Theorem 3.15). Create the sum

sn =

n∑
k=1

mk(xk − xk−1)

that we call lower sum, and the sum

Sn =

n∑
k=1

Mk(xk − xk−1)
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that we call upper sum. The sum the areas of these rectangles approximate the
area below the graph of f from below, and from above, respectively. Check
Figures.pdf for details!

We can easily see that by inserting a new node point sn cannot decrease,
and Sn cannot increase. It can be shown that if the density of the partion gets
higher then the lowest upper bound of the lower sums coincides with the highest
lower bound of the upper sums. Following Riemann's idea, this common value
S is called the de�nite integral of f on the interval [a, b]. The notation is:

S =

∫ b

a

f(x) dx

which means the (signed!) area below the graph of f .

ATTENTION!

The area above the x-axis comes with positive sign, the area below the x-axis
comes with negative sign, respectively.

Based on this geometric interpretation, the following properties of the de�-
nite integral are intuitively obvious.

Theorem 7.6 Let f and g be functions that have de�nite integrals on [a, b].
Then

1. if f(x) ≤ g(x) on the interval [a, b], then∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx

2. in particular, |
∫ b
a
f(x) dx| ≤

∫ b
a
|f(x)| dx.

3. If f(x) ≤M on the interval [a, b] (M is a constant), then∫ b

a

f(x) dx ≤M(b− a)

4. If f is continuous on the interval [a, b], then there exists a point x ∈ [a, b],

for which
∫ b
a
f(x) dx = f(x)(b− a).

5. By de�nition:
∫ a
b
f(x) dx = −

∫ b
a
f(x) dx if a ≤ b.

6.
∫ c
a
f(x) dx =

∫ b
a
f(x) dx+

∫ c
b
f(x) dx

Create a picture, and interpret the above statements geometrically!
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7.5 Newton-Leibniz-formula

In this section we show how a de�nite integral can be evaluated by using the
inde�nite integral (primitive function). Our main result is sometimes called the
"Fundamental Theorem of Calculus" (in the English literature).

Theorem 7.7 (Newton-Leibniz-formula) If F is a primitive function of
the continuous function f on the �nite interval [a, b], then∫ b

a

f(x) dx = F (b)− F (a)

Justi�cation (not a proof!): It is easy to see that our statement is indepen-
dent of the choice of the inde�nite integral. Indeed, if G is another primitive
function of f , then

G(x) = F (x) + C

on [a, b] with a constant C (see Theorem 7.2), and therefore,∫ b

a

f(x) dx = [G(x)]ba = G(b)−G(a) = (F (b) +C)− (F (a) +C) = F (b)−F (a) .

On the other hand, �x a point x ∈ [a, b] and consider the integral

F (x) =

∫ x

a

f(t) dt

Then F (a) = 0, since the length of the path of integration is zero. It would be
enough to show that this F is an inde�nite integral of f .

In view of Theorem 7.6 for any a < x < b and h 6= 0 with x + h ∈ [a, b],
there exists a point x between x and x+ h with the following property:

1

h
(F (x+ h)− F (x)) =

1

h

∫ x+h

x

f(t) dt =
1

h
f(x) · h

Now, if we pass to the limit h→ 0, then x→ x, and by the continuity of f we
also have f(x)→ f(x) that is

lim
h→0

1

h
(F (x+ h)− F (x)) = F ′(x) = lim

h→0
f(x) = f(x)

This means that F is really a primitive function of f . �

It was an amazing achievment by Newton and Leibniz, and the mathematics
of their time, to �nd the beautiful relationship between the derivative and the
geometry of de�nite integrals, as it is described in our theorem.
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This discovery is so fundamental that it cannot be overestimated. First, it
triggered a very rapid developement in physics and chemistry, and somewhat
later it gave a massive boost to the evolution of sciences like biology, economics
and others. Summing up, we may say today that the theory of di�erentiation
and integration provides the precise scienti�c language and vocabulary in all
branches of sciences.

For convenience, sometimes we use the following notation:∫ b

a

f(x) dx = [F (x)]
b
a = F (b)− F (a)

As a consequence of the Newton-Leibniz-formula, we can formulate the following
statement.

Consequence 7.8 If f is continuous on an interval, then it has a primitive
function on that interval.

Proof. In view of the proof of the Newton-Leibniz-formula, we get that the
function

F (x) =

∫ x

a

f(t) dt

is really a primitive function of f on the given interval. �

Example 7.9 Evaluate the de�nite integral below.∫ 2

1

(
2x3 + 1 +

1

x2

)
dx =

[
x4

2
+ x− 1

x

]2
1

= 9

Some more examples: ∫ π/2

0

sinx dx = [− cosx]
π/2
0 = 1∫ 1

0

ex dx = [ex]
1
0 = e− 1∫ 4

0

√
x dx =

[
2

3
· x3/2

]4
0

=
16

3

Study at home:

1. Careful review of "Mathematical Analysis Exercises"

2. Textbook-1, Chapter 10.



Chapter 8

Methods of integration

8.1 Integration by parts

If f and g are continuously di�erentiable functions on an interval I, then by the
Product-Rule we have:∫

f ′(x)g(x) dx = f(x)g(x)−
∫
f(x)g′(x) dx

This formula is called integration by parts. For example, consider the integral∫
xe−x dx

then by using the allocation f ′(x) = e−x and g(x) = x (could we do it the other
way?): ∫

xe−x dx = −xe−x +

∫
e−x dx = −xe−x − e−x + C

Example 8.1 Use integration by parts in the integral∫
xn lnx dx

(where n 6= −1). Introduce the notation f ′(x) = xn and g(x) = lnx, then (what
do we get in the opposite way?)∫

xn lnx dx =
xn+1

n+ 1
lnx−

∫
xn

n+ 1
dx =

xn+1

n+ 1
lnx− xn+1

(n+ 1)2
+ C

In particular, for n = 0 we have:∫
lnx dx = x lnx− x+ C = x(lnx− 1) + C

57



58 CHAPTER 8. METHODS OF INTEGRATION

8.2 Integration by parts in de�nite integrals

We can use integration by parts in de�nite integrals in the following way:∫ b

a

f ′(x)g(x) dx = [f(x)g(x)]ba −
∫ b

a

f(x)g′(x) dx

For istance, by setting f ′(x) = sinx and g(x) = x (would the opposite way
successful?): ∫ π

0

x sinx dx = [−x cosx]π0 +

∫ π

0

cosx dx

= π + [sinx]π0 = π

This procedure is faster than �rst computing the inde�nite integral and then
substituting the bounds. Further, it may minimize the chance of miscalculation.

Example 8.2 Sometimes we need to carry out integration by parts more times
in a row. Consider the integral ∫

x2e−λx dx

where λ > 0 is a given parameter. Introduce the notations f ′(x) = e−λx, and
g(x) = x2, then ∫

x2e−λx dx = − 1

λ
x2e−λx +

1

λ

∫
2xe−λx dx

The last integral can be evaluated by a repeated integration by parts.

Attention! We stick to the notations f ′(x) = e−λx and g(x) = x. In the
opposite situation we come to an absolutely useless identity. Give it a try!∫

x2e−λx dx = − 1

λ
x2e−λx − 2

λ2
xe−λx − 2

λ3
e−λx + C

Example 8.3 Find the de�nite integral below:∫ π

0

ex sinx dx

Apply the setting f ′(x) = ex and g(x) = sinx, the by two consecutive integra-
tions by parts: ∫ π

0

ex sinx dx = [ex sinx]π0 −
∫ π

0

ex cosx dx

= −[ex cosx]π0 −
∫ π

0

ex sinx dx
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Isolate the original integral on the laft-hand side:

2

∫ π

0

ex sinx dx = −[ex cosx]π0

which means ∫ π

0

ex sinx dx =
1

2
(eπ + 1)

8.3 Integration by substitution

From the di�entiation of a composition of functions (i.e. the Chain-Rule) we
derive the following identity:∫

f(g(t))g′(t) dt =

∫
f(x) dx

where x = g(t) is a continuously di�erentiable function on an interval. This
formula is called the integration by substitution.

Example 8.4 Calculate the following inde�nite integral:∫
5t3
√

2 + t4 dt

Observe that by introducing the substitution x = g(t) = t4, the integral can be
rewritten in this form:∫

5t3
√

2 + t4 dt =
5

4

∫ √
2 + x dx =

5

4
· 2

3
(2 + x)3/2 + C

By performing the backsubstitution:∫
5t3
√

2 + t4 dt =
5

6
(2 + t4)3/2 + C

Example 8.5 Consider an example, where the converse approach is useful:∫
ex
√

1 + ex dx

Introduce the substitution x = g(t) = ln t, then g′(t) = 1/t, and we obtain:∫
ex
√

1 + ex dx =

∫
t
√

1 + t
1

t
dt =

2

3
(1 + t)3/2 + C

By the backsubstitution t = ex we get:∫
ex
√

1 + ex dx =
2

3
(1 + ex)3/2 + C
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8.4 Substitution in de�nite integrals

When substitution is applied in de�nite integrals, instead of backsubstitution,
it is much more e�cient to change the bounds of the integral according the
substitution: ∫ b

a

f(g(t))g′(t) dt =

∫ g(b)

g(a)

f(x) dx

Example 8.6 In the example below we use the setting x = g(t) = cos t, then
g′(t) = − sin t, and∫ π/2

0

sin 2t

1 + cos2 t
dt =

∫ π/2

0

2 sin t cos t

1 + cos2 t
dt

= −
∫ 0

1

2x

1 + x2
dx =

∫ 1

0

2x

1 + x2
dx

= [ln(1 + x2)]10 = ln 2

Example 8.7 Apply this rule to evaluate the following celebrated integral:∫ 1

0

√
1− x2 dx

Introduce the substitution x = g(t) = sin t, then g′(t) = cos t and (please observe
the change of the bounds of the integral!):∫ 1

0

√
1− x2 dx =

∫ π/2

0

cos2 t dt

=
1

2

∫ π/2

0

(1 + cos 2t) dt =
1

2

[
t+

sin 2t

2

]π/2
0

=
π

4

The geometric interpretation of this example is as follows. We determined the
area of the �rst qudrant of the unit circle with center at the origin!

8.5 Linear di�erential equations

By a di�erential equation we mean an equation in which the unknown function
and its derivative appear. Several problems and models in micro and macroe-
conomics lead to such equations. A typical equation like that is the linear
di�erential equation.
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Let a and b are given real numbers, and we are looking for the unknown
di�erentiable function y for which

y′ = ay + b (8.1)

y(0) = y0

where y0 is an "a priori" given real number.

The equality y(0) = y0 is called the initial condition. We say that the
di�erentiable function y is a solution to the above problem, if for any t ∈ R we
have y′(t) = ay(t) + b, moreover y(0) = y0. The question is, how to �nd the
solution of this problem?

Let us suppose that y is a solution. Multiply both sides of the equation by
the expression e−at, then after rearranging the terms, we get

y′(t)e−at − ay(t)e−at = be−at

for every real number t. valós számra. Observe that on the left-hand side we
have precisely the derivative of the product y(t)e−at. Therefore, by integrating
both sides from 0 to t-ig (and changing the variable of the integration from t to
s) ∫ t

0

(y′(s)e−as − ay(s)e−as) ds =
[
y(s)e−as

]t
0

=

∫ t

0

be−as ds

By plugging in the bounds we receive

y(t)e−at − y(0) =

∫ t

0

be−as ds .

Rearranging and multiplying both sides by the expression eat we can formulate
our result in the following theorem.

Theorem 8.8 (Cauchy-formula) The solution to problem (8.1) is given by

y(t) = eat
(
y0 +

∫ t

0

be−as ds

)
on the entire real line.

Recall that without prescribing the initial condition y(0) = y0 the linear
di�erential equation (8.1) would possess in�nitely many solutions.

Example 8.9 For instance, if we are looking for the solution of the linear
di�erential equation

y′ = 2y + 5

y(0) = 3
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then by the Cauchy-formula we conclude that

y(t) = e2t
(

3 +

∫ t

0

5e−2s ds

)
= e2t

(
3− 5

2

[
e−2s

]t
0

)
=

11

2
e2t − 5

2

for each t ∈ R.
Verify that this is the correct solution, by direct substitution!

Study at home:

1. Careful review of "Mathematical Analysis Exercises"

2. Textbook-1, Sections 11.1 and 11.2.



Chapter 9

Extension of integration

9.1 Improper integrals

Assume that f is continuous on an in�nite interval [a,+∞). Then for every
b ≥ a the integral

∫ b
a
f(x) dx exists.

De�nition 9.1 We say that the improper integral of f exists (or convergent)
on the in�nite interval [a,∞), if the limit limb→∞

∫ b
a
f(x) dx exists and it is

�nite. The value of the improper integral is de�ned by∫ ∞
a

f(x) dx = lim
b→∞

∫ b

a

f(x) dx

If the limit above is not �nite, or does not exist, then we say that the improper
integral does not exist (or not convergent).

We de�ne the improper integral∫ a

−∞
f(x) dx

in a completely analogous way.

Example 9.2 Investigate the improper integral∫ ∞
1

1

x
dx

By the de�nition ∫ b

1

1

x
dx = [lnx]b1 = ln b

63
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Passing to the limit b → ∞ we see that the limit of ln b is not �nite, therefore
this improper integral is not convergent.

However, the improper integral∫ ∞
1

1

x2
dx

does exist, since

lim
b→∞

∫ b

1

1

x2
dx = lim

b→∞

[
− 1

x

]b
1

= 1

and the value of the improper integral is 1.

By applying the same argument, we see that the improper integral∫ ∞
1

1

xα
dx

is convergent if and only if α > 1, and its value is∫ ∞
1

1

xα
dx =

1

α− 1
(9.1)

since the limit at the upper bound is zero.

Example 9.3 Consider the following important example (density function of
the exponential distribution): ∫ ∞

0

λe−λx dx

where λ > 0 is a given constant. Then for any b > 0 we have:∫ b

0

λe−λx dx =
[
−e−λx

]b
0

= 1− e−λb

Consequently ∫ ∞
0

λe−λx dx = lim
b→∞

(1− e−λb) = 1

for any given constant λ > 0.

9.2 Improper integrals on the real line

De�nition 9.4 We say that improper integral of f on the real line exists, if
the integrals ∫ 0

−∞
f(x) dx and

∫ ∞
0

f(x) dx



9.2. IMPROPER INTEGRALS ON THE REAL LINE 65

are convergent. Then the value of
∫∞
−∞ f(x) dx is given by the sum of the two

integrals.

Example 9.5 For instance, the improper integral∫ ∞
−∞

2x

1 + x2
dx

does not exist, although for any given b > 0 we get∫ b

−b

2x

1 + x2
dx = 0

because the integrand is an odd function. However,∫ b

0

2x

1 + x2
dx = ln(1 + b2)

and its limit is +∞, when b → ∞ and according to the de�nition the integral
is not convergent. The same can be said about the integral on (−∞, 0].

Example 9.6 Evaluate the following improper integral:

I =

∫ ∞
0

xe−cx
2

dx

where c > 0 is a given constant. Here for every b > 0 we obtain∫ b

0

xe−cx
2

dx =

[
− 1

2c
e−cx

2

]b
0

This implies that I = 1/2c. On the other hand, the integrand is an odd function,
thus, ∫ ∞

−∞
xe−cx

2

dx = 0 .

Note that it was important to verify that the integral is convergent!

Example 9.7 (Gauss-integral) The following integral is important in prob-
ability theory:

I =

∫ ∞
−∞

e−x
2

dx

(density function of the normal distribution). The evaluation of this improper
integral needs some sophisticated calculations, we skip the details here. The
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reason why this problem is hard is that the primitive function cannot be given
explicitly.

ATTENTION! That does not mean there is no primitive function! The
integrand is continuous, which implies that the primitive function exists (see
the Chapter 7). The main di�culty is that this primitive function cannot be
expressed in terms of elementary functions.

It can be shown that ∫ ∞
0

e−x
2

dx =

√
π

2

and therefore I =
√
π, since the integrand is an even function.

By applying the substitution x = t
√

2, we also see that

1√
2π

∫ ∞
−∞

e−
x2

2 dx = 1 (9.2)

This equality will play an important role in probability theory.

9.3 Integration by parts in improper integrals

In the upcoming examples we use integration by parts in improper integrals.
For simplicity, instead of passing to the limit b → +∞, we brie�y indicate the
upper bound +∞. (But we should know what it means!)

Example 9.8 Suppose that λ is a positive constant, and evaluate the improper
integral ∫ ∞

0

λxe−λx dx

By setting f ′(x) = λe−λx and g(x) = x (this way we make sure that the
multiplier x will disappear in the second integral), we get∫ ∞

0

λxe−λx dx =
[
−xe−λx

]∞
0
−
∫ ∞
0

−e−λx dx

= −
[
e−λx

λ

]∞
0

=
1

λ
.

Observe that the expression within the brackets is zero! It is a consequence of
L'Hôpital's Rule.

Example 9.9 Suppose again that λ is a positive constant, and now evaluate
the improper integral ∫ ∞

0

λx2e−λx dx
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Applying again the setting f ′(x) = λe−λx and g(x) = x2 (this way we make sure
that the degree of the multiplier x2 decreases), by two consecutive integrations
by parts (with the same setting) we obtain∫ ∞

0

λx2e−λx dx =
[
−x2e−λx

]∞
0
−
∫ ∞
0

−2xe−λx dx

=

[
−2xe−λx

λ

]∞
0

−
∫ ∞
0

−2
e−λx

λ
dx

=

[
−2

e−λx

λ2

]∞
0

=
2

λ2

In this example we needed two integrations by parts in a row to eliminate the
multiplier x2. In view of the L'Hôpital-Rule, the expressions inside the brackets
are zero.

Example 9.10 Use integration by parts to evaluate the improper integral∫ ∞
−∞

x2e−x
2/2 dx

By allocating the roles among the factors in a smart way, we conclude:∫ ∞
−∞

(−x) ·
(
−xe−x

2/2
)
dx =

[
−xe−x

2/2
]∞
−∞

+

∫ ∞
−∞

e−x
2/2 dx =

√
2π

where we relied on formula (9.2). Indeed, making use of L'Hôpital's Rule, we
see that both limits of the expression within the brackets are zero, hence∫ ∞

−∞
x2e−x

2/2 dx =
√

2π . (9.3)

9.4 Harmonic series revisited

As we have seen in Chapter 2, for a given exponent α > 0 the in�nite series

∞∑
k=1

1

kα
(9.4)

is divergent if α ≤ 1, and it is convergent if α ≥ 2. However, we were unable
to �nd the answer when 1 < α < 2. Now we give a complete solution by using
improper integrals. Consider n-th partial sum of the series

Sn =

n∑
k=1

1

kα
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and sketch the graph of the function

f(x) =
1

xα

on the positive part of the real line. Take the values of the functions at the
integers 1, . . . , n, then by examining the graph we can easily see that

Sn < 1 +

∫ n

1

1

xα
dx

since the function f is strictly monotone decreasing.

ATTENTION! Check Figures.pdf for the details!

On the other hand f is positive, and for α > 1 its improper integral on the
interval [1,∞) is convergent, see the equality (9.1). Therefore

Sn < 1 +

∫ n

1

1

xα
dx < 1 +

∫ ∞
1

1

xα
dx = 1 +

1

α− 1
=

α

α− 1
.

We conclude that Sn is bounded from above, and it is clearly strictly monotone
increasing, hence it is convergent. We summarize this result in the following
theorem.

Theorem 9.11 The in�nite series (9.4) is convergent if and only if α > 1,
and in this case

∞∑
k=1

1

kα
<

α

α− 1

Study at home

1. Careful review of "Mathematical Analysis Exercises"

2. Textbook-1, Sections 11.3 and 11.4.



Chapter 10

Power series

10.1 Sum of power series

If −1 < x < 1 is a given real number, then the geometric series

1

1− x
=

∞∑
k=0

xk .

is convergent. It is an interesting question if a given function f can be given in
the form

f(x) =

∞∑
k=0

akx
k (10.1)

with appropriate coe�cients ak. In this case we say that f can be expanded in
a power series.

De�nition 10.1 The series on the right-hand side of the equality (10.1) is
called a power series, the function f on the left-hand side is called the sum of
the power series.

In this chapter we examine two interesting questions.

1. For what values x is the power series convergent, and what is its sum f .

2. Conversely, if a function f is given, how can we �nd the power series whose
sum is precisely f (if possible).

A power series is obviously convergent for x = 0 and its sum is a0. The set
of all values of x for which the power series is convergent is called the set of
convergence.

69
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10.2 Radius of convergence

The set of convergence of a power series is always an interval that is symmetric
about the origin. This fact is formulated in the following theorem.

Theorem 10.2 (Cauchy-Hadamard-theorem) For the power series (10.1)
there exists a nonnegative number R (maybe R = 0 or in�nity) so that the series
is convergent in the open interval −R < x < R, and it is divergent outside the
closed interval [−R,R].

Proof. We just restrict our attention to the case when the limit

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = r

exists. Introduce the notation:

R =

 1/r ha 0 < r < +∞
+∞ ha r = 0
0 ha r =∞

In view of the Quotient Test the seies is convergent, if

lim
k→∞

∣∣∣∣ak+1x
k+1

akxk

∣∣∣∣ < 1

which exactly means that |x| < R.

A completely analogous argument shows that the series is divergent when
|x| > R. �

ATTENTION!

This theorem says nothing about the boundary of the interval! At |x| =
R the series may or may not be convergent. This cannot be decided by our
theorem, further analysis is needed.

De�nition 10.3 The number R above is called the radius of convergence of
the power series.

Example 10.4 Consider the power series

∞∑
k=0

xk

k!

Here we have

lim
k→∞

ak+1

ak
= lim
k→∞

k!

(k + 1)!
= lim
k→∞

1

k + 1
= 0
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and hence R =∞. This means that the power series is convergent on the whole
real line.

Another example is the power series

∞∑
k=1

xk

k

Then we get

lim
k→∞

ak+1

ak
= lim
k→∞

k

k + 1
= 1

and hence R = 1. We conclude that the series is convergent in the open interval
(−1, 1), and it is divergent outside the closed interval [−1, 1].

On the other hand, we see that for x = 1 we obtain the divergent harmonic
series, and further for x = −1 we get a convergent series with alternating signs,
see Example 2.12. Thus, the interval of convergence of this power series is the
interval

[−1, 1)

closed from the left and open from the right. Please observe that on the bound-
ary anything can happen!

10.3 Di�erentiability of power series

Consider a power series whose radius of convergence is R > 0 and its sum
function is f that is

∞∑
k=0

akx
k = f(x)

for every −R < x < R.

Theorem 10.5 The sum f of the power series is di�erentiable, in particular

f ′(x) =

∞∑
k=1

kakx
k−1

in the open interval (−R,R).

We do not prove this theorem (it is technical), just note that it is based on
the so-called "uniform convergence" principle. Some consequences however, can
easily be derived from this statement.

• The derivative of the sum is obtained from di�erentiating the power series
term by term. This is not obvious, since the sum rule (in general) is not
true for in�nitely many terms. FIND COUNTEREXAMPLES!
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• Observe that the radius of convergence of the derivative power series is
still R. VERIFY!

• As we see that f ′ is the sum of a power series in the same interval, by
repeated applications of the theorem, we deduce that f is in�nitely many
times di�erentiable in the open interval (−R,R).

Example 10.6 Consider the geometric series in the open interval −1 < x < 1

∞∑
k=0

xk =
1

1− x

Note that the �rst term is 1, whose derivative is zero. Making use of our theorem

∞∑
k=1

kxk−1 =
1

(1− x)2

for every −1 < x < 1.

Example 10.7 Find the function f that is given by the following power series:

f(x) =

∞∑
k=1

(−1)k−1
xk

k

A simple calculation shows that the radius of convergence is R = 1. On the one
hand f(0) = 0, on the other hand, by the di�erentiability of the power series

f ′(x) =

∞∑
k=1

k
(−x)k−1

k
=

∞∑
k=1

(−x)k−1 =
1

1 + x

for each −1 < x < 1. This implies

f(x) = f(0) +

∫ x

0

1

1 + t
dt = [ln(1 + t)]

x
0 = ln(1 + x)

in the open interval (−1, 1). Moreover, by Example 2.12 the original series is
convergent at x = 1, which leads to the celebrated identity

1− 1

2
+

1

3
− 1

4
+

1

5
− . . . = ln 2

However, the series is divergent at x = −1.
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10.4 Finding the coe�cients

Suppose that a function f can be given as the sum of a power series in the interval
of convergence. Then necessarily f is in�nitely many times di�erentiable in the
interval. How could we determine the coe�cients of the power series?

By succesively taking the derivatives of both sides of equality (10.1), the
coe�cients ak can be computed step by step. Indeed, observe that

f(0) = a0, f ′(0) = a1, f ′′(0) = 2a2, . . .

and in general, for any given index k we get:

f (k)(0) = k! · ak

If we substitute these expressions for ak in the power series, then we have

f(x) =

∞∑
k=0

f (k)(0)

k!
xk

This form is called the Taylor-series (or Taylor expansion) of f .

10.5 Taylor-series of the exponential function

In this section we consider the exponential function f(x) = ex. If this function
is the sum of a power series, then the coe�cients can only be

ak =
1

k!

for every k. Indeed, any derivative of ex is ex, which takes the value 1 at x = 0.
Therefore, the Taylor-series associated with the function ex is:

∞∑
k=0

xk

k!

and we have seen that this series is convergent on the entire real line.

The reason why we did not write equality is that it is not yet clear at the
moment that the sum of this series is really ex.

To overcome this di�culty, consider the function

f(x) =

∞∑
k=0

xk

k!

on the real line, which is yet to be determined. Clearly f(0) = 1. On the other
hand, in view of the di�erentiability theorem:

f ′(x) =

∞∑
k=1

k
xk−1

k!
=

∞∑
k=1

xk−1

(k − 1)!
= f(x)
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for every −∞ < x < ∞. This is a simple linear di�erential equation for the
unknown f , whose only solution is

f(x) = ex

on the real line. As a consequence, we deduce the celebrated identity

e = 1 +
1

1!
+

1

2!
+ . . .+

1

n!
+ . . .

by substituting x = 1.

Study at home

1. Careful review of "Mathematical Analysis Exercises"

2. Textbook-1, Section 6.5.



Chapter 11

Functions of two variables

11.1 Partial derivatives

Consider a function f : R2 → R of two variables. Fix the coordinate y = b and
examine the function

x→ f(x, b)

of only one variable. Assume that this function is di�erentiable at a point a,
and determine its derivative.

De�nition 11.1 The derivative above is called the partial derivative of the
function f with respect to the variable x at the point (a, b). We denote it by

∂f

∂x
(a, b) = f ′1(a, b)

Sometimes the notation f ′x(a, b) is also used.

Example 11.2 Consider for instance the function f(x, y) = (x + 2y)ex+3y−1

and �nd its partial derivative with respect to x at the point (1, 1).

Then f(x, 1) = (x+ 2)ex+2, whose derivative at any x is

f ′1(x, 1) = ex+2 + (x+ 2)ex+2 = (x+ 3)ex+2

Substituting x = 1 we obtain f ′1(1, 1) = 4e3.

Example 11.3 Principally, we could also calculate the partial derivative of
the function f with respect to the variable x with an arbitrarily selected and
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�xed y, and substitute the values x = a and y = b. This is of course good, but
not always convenient, as shown in the following example. Take

f(x, y) =
√
x2 + y2 + 5 · e−2x+y · cos(y + π/2)

and �nd the partial derivative with respect to x at the point (1, 0). Then the
above way would give you the right answer, but it requires a long calculation
and very time consuming. However, if we follow the de�nition, then we see that

f(x, 0) = 0

for every x, and therefore f ′1(1, 0) = 0.

The correspondence

x→ ∂f

∂x
(x) , x ∈ R

is called the partial derivative function of f with respect to the variable x.

11.2 Tangent planes

Partial derivatives (similarly to the one variable case) can be given a nice geo-
metric interpretation. Consider a function f : R2 → R with two variables. The
graph of this function is a surface in the three dimensional space. Pick a point

P (a, b, f(a, b))

on the surface. If this surface is intersected by the plane y = b passing through
the point P , then we get a curve lying on the surface. The slope of the tangent
line to this curve at P is exactly the partial derivative f ′1(a, b). We can give an
analogous interpretation for the slope of the tangent line that lies in the plane
x = a. The plane spanned by the two tangent lines has the following normal
vector (perpendicular):

v = (f ′1(a, b), f ′2(a, b),−1)

By using the notation c = f(a, b) the equation of this plane is

f ′1(a, b)(x− a) + f ′2(a, b)(y − b)− (z − c) = 0 .

This plane is called the tangent plane to the surface at the point P .

Example 11.4 Find the value of the parameter p if the tangent plane to the
function

f(x, y) = px
√
x2 + y2 + 1− 7

at the point a = 2, b = 2, c = f(2, 2) passes through the point Q(2,−1, 6).
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Simple substitution shows that f(2, 2) = 6p − 7, which means that we are
looking for the equation of the tangent plane at the point P (2, 2, 6p− 7). Cal-
culate the partial derivatives:

∂f

∂x
(2, 2) =

13

3
p and

∂f

∂y
(2, 2) =

4

3
p

Hence, the equation of the tangent plane at P is:

13

3
p(x− 2) +

4

3
p(y − 2)− (z − 6p+ 7) = 0 .

If the tangent plane passes through the point Q, then its coordinates satisfy the
equation of the plane. This gives us the following equation for the unknown
parameter p:

−4p = 13− 6p .

The only solution is p = 13/2.

11.3 Chain Rule

Consider now the functions f : R2 → R and g : R → R2 where for every t ∈ R
we use the notation

g(t) = (g1(t), g2(t))

Suppose that the range of g lies in the domain of f . Then we may examine the
composition

f ◦ g : R→ R

We want to give a condition on the di�erentiability of f ◦ g.

Theorem 11.5 (Chain Rule) If both g1 and g2 are di�erentiable at t, and the
partial derivative functions of f are continuous at g(t), then f ◦g is di�erentiable
at t, and

(f ◦ g)′(t) =
∂f

∂x
(g(t))g′1(t) +

∂f

∂y
(g(t))g′2(t)

Our theorem is very similar to the Chain Rule with one variable (see Chapter
4). Its proof (skipped) would follow the same ideas, but technically a bit more
involved.

Example 11.6 Take for instance f(x, y) = x2 − xy + y2, and

x = g1(t) = cos t y = g2(t) = sin t
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and consider the composition function F (t) = (f ◦ g)(t). Making use of the
Chain Rule

F ′(t) = (f ◦ g)′(t) =
∂f

∂x
(g(t))g′1(t) +

∂f

∂y
(g(t))g′2(t)

= (2 cos t− sin t)(− sin t) + (− cos t+ 2 sin t) cos t = sin2 t− cos2 t

for every t ∈ R.

Example 11.7 Consider the function f : R2 → R and suppose that its partial
derivatives exist and are continuous. Take the vector v = (v1, v2) ∈ R2 in the
plane, and let a point P (a, b) ∈ R2 be given. Then the equation of the straight
line in the direction v and passing through the point P (a, b) is:

g(t) = (a, b) + tv = (a+ tv1, b+ tv2) .

Using these notations we have g′1(t) = v1, g′2(t) = v2. Further, take the compo-
sition function

F (t) = f((a, b) + tv)

then by the Chain Rule, its derivative is given by:

F ′(t) =
∂f

∂x
((a, b) + tv)v1 +

∂f

∂y
((a, b) + tv)v2

In particular for t = 0 we obtain:

F ′(0) =
∂f

∂x
(a, b)v1 +

∂f

∂y
(a, b)v2

11.4 Local extrema

The absolute value (or the distance from the origin) of a vector v = (x, y) in
the two dimensional plane is de�ned by:

‖v‖ = (x2 + y2)1/2

that is called the norm of the vector v.

De�nition 11.8 In the plane R2 the set

B = {v ∈ R2 : ‖v‖ ≤ 1}
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is called the unit disk (with center at the origin and radius equals 1). Conse-
quently, a disk with center at the point (a, b) ∈ R2 and radius r > 0 is given
by

(a, b) + rB = {v ∈ R2 : ‖v − (a, b)‖ ≤ r}

(i.e. the set of points, whose distance from the center is at most r).

Consider a function f : R2 → R. We say that a point P (a, b) in the domain
is a local minimum point of f , if there exists a ε > 0 such that

f(x, y) ≥ f(a, b)

for all points (x, y) in the domain of f , where (x, y) ∈ (a, b) + εB, that is
‖(x, y)− (a, b)‖ ≤ ε.

The local maximum is de�ned analogously. For global minimum or maximum
the inequality must hold on the entire domain of f .

11.5 First order necessary condition

In this section we suppose that partial derivatives of the function f : R2 → R
exist and are continuous.

Theorem 11.9 If the point (a, b) ∈ R2 is a local minimum point of f , then
f ′1(a, b) = 0 and f ′2(a, b) = 0.

Proof. Take a non zero vector v ∈ Rn arbitrarily, and consider the compo-
sition function

F (t) = f((a, b) + tv) .

In vew of our assumption the function F has a local minimum at t = 0. On the
other hand, F is di�erentiable, namely

F ′(t) =
∂f

∂x
((a, b) + tv)v1 +

∂f

∂y
((a, b) + tv)v2

Applying Theorem 5.7 we get F ′(0) = 0 for every vector v, in other words

∂f

∂x
((a, b))v1 +

∂f

∂y
((a, b))v2 = 0

for all real numbers v1 and v2. This is only possible if

∂f

∂x
((a, b)) = 0 and

∂f

∂y
((a, b)) = 0

and this is exactly that we wanted to prove. �

Analogous theorem applies for the case of local maximum.
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This theorem tells us that local extrema can only be at points where both
partial derivatives are zero. In other words, local extrema can be only be found
in the solution set of the system of equations with both partial derivatives being
zero. This is however, just a necessary condition (just like in the one-variable
case), and by no means su�cient! For example, in the case of the function

f(x, y) = x3y2

we have the necessary condition f ′1(x, y) = f ′2(x, y) = 0. A solution to this
system is (x, y) = (0, 0), and at this point

f(0, 0) = 0

But this is neither a minimum nor a maximum. It is easy to see that the
function has both positive and negative values in any disk around the origin
(with whatever positive radius). Thus, the origin cannot be a local extreme
point.

Example 11.10 Consider the function

f(x, y) =
1

x
+

1

y
+
xy

8

on the plane, where x 6= 0 and y 6= 0, and try to �nd its local extreme points.
Find the zeros of the partial derivatives!

∂f

∂x
= − 1

x2
+
y

8
= 0

∂f

∂y
= − 1

y2
+
x

8
= 0

The only solution to the simultaneous equations is

x = 2 and y = 2 ,

therefore f can only have a local extremum (minimum or maximum) at this
point.

A comprehensive method for deciding whether or not a critical point is a
local extremum will be discussed in the Linear Algebra course (third semester,
sophomore year). We note here that P (2, 2) is in fact a local minimum point of
f (see the "Mathematical Analysis Exercises" for more details).

Study at home

1. Careful review of "Mathematical Analysis Exercises"

2. Textbook-1, Sections 15.3, 15.4, 15.6, 16.1 and 16.2.
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Constrained extrema

12.1 Implicit functions

A problem often encountered in microeconomics is the following. If an equation

F (x, y) = 0

is given, can we uniquely express the variable y from the equation as a function
of x? In other words: can we �nd a unique function y = g(x) such that the
identity

F (x, g(x)) = 0

holds at every point x?

Such a function does not necessarily exist. For example, in the case of the
equation

F (x, y) = x2 + y2 − 1 = 0

(equation of the unit circle) the variable y cannot be expressed uniquely as a
function of x. Geometrically this means that the set of points on the plane that
satisfy the equation F (x, y) = 0 cannot be the graph of a function. The reason
for this is that some vertical lines (parallel to the y-axis) intersect this curve
twice.

It may even happen that the variable y cannot be expressed from the equa-
tion by algebraic manipulations. Such an example is the equation

F (x, y) = ex+y − 2 cos y + 1 = 0

It is easy to see that the point (x, y) = (0, 0) satis�es the equation, but the
variable y cannot be isolated on one side.

We also raise the following question. If F is di�erentiable, then can we
express the variable y from the equation as a di�erentiable function of x? This
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question is answered by the following theorem.

Tétel 12.1 (Implicit function theorem) Assume that the at the point
(x0, y0) we have

F (x0, y0) = 0

moreover the partial derivatives of F are continuous in a neighborhood of this
point, and

F ′2(x0, y0) 6= 0

Then there exists a unique continuously di�erentiable function g in a neighbor-
hood of the point x0 such that

• g(x0) = y0

• F (x, g(x)) = 0 at every point x

• g′(x) = −F ′1(x, g(x))/F ′2(x, g(x))

We point out that from the continuity of the partial derivatives we get that
F ′2(x, g(x)) 6= 0 in a neighborhood of the point x0.

The geometric interpretation of our theorem is that if the tangent line to the
planar curve with equation F (x, y) = 0 at the point (x0, y0) is not parallel to
the y-axis (i.e. "the curve cannot turn back"), then y can be expressed (locally)
as a di�erentiable function of x.

Example 12.2 Consider the implicit equation

F (x, y) = ex+y + x+ y − 1 = 0

The point (0, 0) satis�es the equation. On the other hand, at this point

F ′2(0, 0) = 2

Hence, F ful�lls the conditions of the Implicit function theorem: there exist a
unique di�erentiable function y = g(x) with

g′(x) = −F ′1(x, g(x))/F ′2(x, g(x))

= − 1

ex+g(x) + 1
· (ex+g(x) + 1) = −1

at every point x. Since g(0) = 0, this implies

g(x) = −x

and this is the only solution.



12.2. CONSTRAINED MINIMA 83

Példa 12.3 A slightly more complicated example is

F (x, y) = ex+y − 2 cos y + 1 = 0

The point (0, 0) satis�es the equation. On the other hand, at this point

F ′2(0, 0) = 1

and hence, the conditions of the Implicit function theorem are ful�lled. We
conclude that the equation uniquely determines a di�erentiable function g so
that F (x, g(x)) = 0 at every x. However, this function cannot be expressed
explicitly by using algebraic manipulations.

12.2 Constrained minima

Consider the functions f and F that are both R2 → R and suppose that their
partial derivatives are continuous. By a constrained minimum problem we mean
the following problem:

f(x, y) → min (12.1)

F (x, y) = c

where c is a given real constant. In other words, we look for the minimum (or
sometimes maximum) of f on the set keressük a

H = {(x, y) ∈ R2 : F (x, y) = c}

This equality is called the constraint.

De�nition 12.4 We say that the point (x0, y0) ∈ H is the solution of the
constrained minimization problem (12.1) if

f(x0, y0) ≤ f(x, y)

for every (x, y) ∈ H esetén. An analogous de�nition applies for maximum
problems.

Example 12.5 The example below illustrates that for constrained minimiza-
tion problems the usual necessary conditions for extrema do not work. Consider
the constrained minimization problem

f(x, y) = x2 + 2y, F (x, y) = x+ y = 0 i.e. c = 0

From the constraint x+y = 0 we get y = −x, and consequently f(x, y) = x2−2x
on the set H. This function achieves its minimum at the point x = 1 and in H
this necessarily means y = −1. Thus, the constrained minimum is at the point

(x0, y0) = (1,−1)



84 CHAPTER 12. CONSTRAINED EXTREMA

However, et this point none of the equalities

∂f

∂x
= 0,

∂f

∂y
= 0

is true. Verify this!

This example also exhibits that a constrained extremum problem can be
transformed into a non-constrained extremum problem by expressing the vari-
able y as a function of x from the constraint F (x, y) = c. In more complicated
problems this may not be possible by algebraic manipulations. This is the point
where we need the Implicit function theorem.

12.3 Lagrange multipliers

Consider the constrained minimization problem (12.1). By using the Implicit
function theorem we make sure that the variable y can be expressed from the
constraint F (x, y) = c, and that way we can solve the problem. This procedure
is described below.

De�nition 12.6 The Lagrange-function (or Lagrangian) of the problem (12.1)
is de�ned by

L(x, y, λ) = f(x, y)− λ(F (x, y)− c)

λ is an arbitrary real number.

Theorem 12.7 (Lagrange-method) Let us suppose that (x0, y0) is the so-
lution of the problem (12.1), and assume that the partial derivatives of f and F
are continuous in a neighborhood of this point. If

F ′2(x0, y0) 6= 0 , (12.2)

there exists a unique real number λ such that

∂L
∂x

(x0, y0, λ) = 0 , and
∂L
∂y

(x0, y0, λ) = 0

Proof. In view of (12.2) the conditions of the Implicit function theorem are
ful�lled. Thus, there exists a unique continuously di�erentiable function g with

• g(x0) = y0, and

• F (x, g(x)) = c in a neighborhood of x0, furthermore
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• g′(x0) = −F ′1(x0, y0)/F ′2(x0, y0).

If (x0, y0) is the solution of problem (12.1), then the function x → f(x, g(x))
achieves its minimum at x0, therefore, its derivative at this point is zero. Ap-
plying the Cahin Rule, the derivative can be given in this form: szerint

f ′1(x0, y0) + f ′2(x0, y0)g′(x0) = f ′1(x0, y0)− f ′2(x0, y0)

F ′2(x0, y0)
F ′1(x0, y0) = 0 .

Introduce the notation:

λ =
f ′2(x0, y0)

F ′2(x0, y0)
.

Using this notation, the above derivative can be rewritten:

∂L
∂x

(x0, y0, λ) = f ′1(x0, y0)− λF ′1(x0, y0) = 0 .

The second equality of the theorem is trivial by simply substituting λ. Indeed:

∂L
∂y

(x0, y0, λ) = f ′2(x0, y0)− λF ′2(x0, y0) = 0 .�

Our theorem could be formulated analogously for the case of maximum.

12.4 Solving the constrained minimization prob-

lem

The procedure of solving the constrained minimization problem (12.1) is as
follows.

1. Find the Lagrange-function of the problem.

2. Find the partial derivatives with respect to x and y, and make them equal
zero.

3. Take into account that F (x0, y0) = c.

4. Solve the system of three equations for x, y and λ.

The point (x0, y0) obtained that way satis�es the necessary condition for an
extremum. The solution λ is called the Lagrange multiplier associated with the
problem.

Example 12.8 Now solve the constrained minimization problem in Example
12.5 by using the Lagrange-method. The Lagrange-function of the problem is:

L(x, y, λ) = x2 + 2y − λ(x+ y) .
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The system of equations is of the form:

∂L
∂x

(x0, y0, λ) = 2x0 − λ = 0

∂L
∂y

(x0, y0, λ) = 2− λ = 0

∂L
∂λ

(x0, y0, λ) = x0 + y0 = 0

The only solution to this system is λ = 2, x0 = 1 and y0 = −1.

Példa 12.9 The following type of problem frequently appears in microeco-
nomics. Find the constrained maximum of consumer demand:

xαyβ → max (12.3)

px+ y = m

where α, β, p and m are given positive real numbers. In this problem

f(x, y) = xαyβ and F (x, y) = px+ y ,

Therefore, the Lagrange-function of the problem is:

L(x, y, λ) = xαyβ − λ(px+ y −m) .

The system of equation that comes from the Lagrange-method:

∂L
∂x

(x0, y0, λ) = α · xα−10 yβ0 − λp = 0

∂L
∂y

(x0, y0, λ) = β · xα0 y
β−1
0 − λ = 0

∂L
∂λ

(x0, y0, λ) = px0 + y0 −m = 0 .

This system admits the following single solution:

px0 =
α

α+ β
m and y0 =

α

α+ β
m ,

The Lagrange multiplier λ can be then calculated from the second equation.

Study at home

1. Careful review of "Mathematical Analysis Exercises"

2. Textbook-1, Sections 16.3, 18.1, 18.2, 18.3, 18.4, 18.5 and 18.6.
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Chapter 13

Probability

13.1 Experiments

In the sequel we deal with experiments that have chance outcomes. In other
words, the experiments have outcomes that cannot be predicted.

1. Toss a playing die and check the number that comes out.

2. Toss a pair of dice.

3. Toss a die, then �ip a coin as many times as the number on the die.

4. Keep tossing a die until 6 comes out for the �rst time.

5. Pick a point randomly on the unit disc (with radius 1).

More complicated examples:

• The number of cars that pass an intersection between 10 am and 11 am.

• The number of calls received by a call center between 8 am and 9 am.

• The length of time period between two successive calls

• The price of a stock at the stock exchange at closing time.

• The waiting time at a customer service desk.

13.2 The sample space

De�nition 13.1 Let Ω denote the set of all possible outcomes in an exper-
iment. The set Ω is called the sample space associated with the experiment.
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Specify the sample spaces that are associated with the previous experiments.
Then in the same order:

1. Ω = {1, 2, 3, 4, 5, 6}

2. Ω = {(1, 1), (1, 2), (2, 1), (1, 3), . . . , (6, 6)}

3. Ω = {1H, 1T, 2HH, 2HT, 2TH, 2TT, . . .} (Question: how many elements
are in the sample space?)

4. Ω consists of all �nite sequences whose last digit is 6, and all previous
digits are any of the numbers 1,2,3,4,5.

5. Ω = {(x, y) ∈ R2 : x2 + y2 ≤ 1}

13.3 Events

De�nition 13.2 The subsets of the sample space are called events.

Take some examples in the sample spaces above.

1. Let A denote the event that the outcome is even. Then A = {2, 4, 6}.

2. Let A denote the event that the sum of the two numbers is 7. Then
A = {(1, 6), (6, 1), (2, 5), (5, 2), (3, 4), (4, 3)}.

3. Let A denote the event that we have no Tail (all of them are Head). Then
A = {1H, 2HH, 3HHH, 4HHHH, 5HHHHH, 6HHHHHH}.

4. Let A denote the event that we needed at most two tosses. Then A =
{6, 16, 26, 36, 46, 56}.

5. Let A denote the event that the distance of the point from the center is
less than 1/2. Then A = {(x, y) : x2 + y2 < 1/4}.

13.4 Operations with events

We say that the event A ⊂ Ω occurs, if the experiment results in an outcome
ω ∈ Ω such that ω ∈ A.

The impossible event has no elements, notation: ∅ (empty set). The certain
event is: Ω (the whole sample space).

1. A ∩ B occurs if and only if both A and B occur. We say that A and B
are mutually exclusive, if A ∩B = ∅.
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2. A ∪B occurs if and only if either A or B occurs (or both).

3. A (the complement of A) occurs if and only if A does not occur.

We say that A implies B (or B is a consequence of A), if A ⊂ B.

Theorem 13.3 (De Morgan Rules)

1. A ∪B = A ∩B

2. A ∩B = A ∪B

These identities hold true for an arbitrary number of events as well.

Proof. We demonstrate the �rst identity. Let x ∈ A ∪B be selected arbi-
trarily. Then

x ∈ A ∪B ⇒ x 6∈ A ∪B ⇒ x 6∈ A and x 6∈ B ⇒ x ∈ A and x ∈ B ⇒ x ∈ A ∩B

This proves that A ∪B ⊂ A ∩B. The opposite direction (and hence the equal-
ity) follows from the fact that each implication can be reversed (i.e. they are
equivalences). The second identity can be veri�ed in a completely analogous
way. �

When we carry out an experiment, some possible outcomes may not be
observable. For instance, if we toss a pair of completely identical (indistinguish-
able) dice, we cannot decide whether the outcome is (1, 2) or (2, 1). We can
only claim that the event {(1, 2), (2, 1)} occured.

De�nition 13.4 Let A denote the collection of observable events. We assume
that they possess the following properties.

• If A ∈ A, then A ∈ A and Ω ∈ A.

• If A1, A2, . . . ∈ A, then A1 ∪A2 ∪ . . . ∈ A.

Proposition 13.5 If A and B are observable, then so is A ∩B.

Proof. Indeed, if A and B are observable, then

A ∩B = A ∪B ∈ A

in view of the De Morgan Rules. �

By the De Morgan Rules, this proposition remains true for any countable
number of events.

De�nition 13.6 In the following, by an experiment we mean the couple
K = (Ω,A).
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13.5 Probability space

Suppose that we perform an experiment K n times in a row, and every time we
observe whether or not a given event A ∈ A occurs. If A occurs kn times out of
n trials, then the relative frequency of A is:

kn
n

Experience shows that by raising n, the relative frequency exhibits a dump-
ing oscillation around a speci�c number. This number can be regarded as the
probability of A.

Instead of using this experimental approach, below we develop an axiomatic
introduction of probability. From the axioms we can derive the above experi-
mental fact.

De�nition 13.7 (Axioms of Probability) Consider an experiment K =
(Ω,A). By the probability we mean a function

P : A → [0, 1]

that satis�es the following two axioms:

1. P (Ω) = 1

2. If A1, A2, . . . ∈ A are pairwise mutually exclusive events, then

P (

∞⋃
k=1

Ak) =

∞∑
k=1

P (Ak)

In this case the triple (Ω,A, P ) is called a probability space.

This axiomatic approach is due to A. N. Kolmogorov (1933), and this can
be regarded as the origin of modern probability theory.

From the axioms we can easily derive the following properties of probability
spaces.
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Theorem 13.8

1. For any A ∈ A we have

P (A) = 1− P (A)

and consequently P (∅) = 0.

2. If A,B ∈ A and A ⊂ B, then

P (A) ≤ P (B)

3. If A,B ∈ A, then

P (A ∪B) = P (A) + P (B)− P (A ∩B)

Proof. 1. Since A ∪ A = Ω, moreover A and A are exclusive events, the
statement follows immediately from the axioms.

2. If A ⊂ B, then A ∪ (B ∩ A) = B, moreover A and B ∩ A are exclusive
events, therefore, by the axioms

P (B) = P (A) + P (B ∩A) ≥ P (A)

because P (B ∩A) ≥ 0.

The 3. statement is proven the following way. We divide the event A ∪ B
into disjoint pieces like this:

A ∪B = (A ∩B) ∪ (A ∩B) ∪ (A ∩B) .

Then, using the axioms, we get:

P (A ∪B) = P (A ∩B) + P (A ∩B) + P (A ∩B)

= P (A)− P (A ∩B) + P (B)− P (A ∩B) + P (A ∩B)

and the statement ensues. �

Example 13.9

In a Freshman class the probability that a randomly selected student passed
the mathematics exam is 0.72, passed the microeconomics exam is 0.66, and
passed both is 0.54. Find the probability that a randomly selected student

(a) passed at least one of those exams,

(b) passed the microeconomics exam, but did not pass the mathematics
exam,

(c) passed none of the exams.

Let A denote the event that a randomly selected student passed the math-
ematics exam, and B is the event that the student passed the microeconomics
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exam. Then P (A) = 0.72, P (B) = 0.66 and P (A∩B) = 0.54. Using the events
A and B, the desired probabilities can be given the following way.

(a) P (A ∪B) = P (A) + P (B)− P (A ∩B) = 0.84

(b) P (A ∩B) = P (B)− P (A ∩B) = 0.12

(c) P (A ∩B) = P (A ∪B) = 1− P (A ∪B) = 0.16

Recitation and Exercises

1. Reading: Textbook-2, Sections 2.1, 2.2, 2.3, 2.4, 2.5.

2. Homework: Textbook-2, Exercises 2.11, 2.19, 2.32, 2.33, 2.37, 2.38, 2.54,
2.58, 2.59, 2.61, 2.110, 2.112.

3. Review: Highschool Combinatorics and Binomial Theorem (Textbook-2,
Section 2.3), and "Probability Exercises"



Chapter 14

Sampling methods

14.1 Classical probability spaces

De�nition 14.1 Consider a probability space (Ω,A, P ). It is called a classical
probability space, if

• Ω is a �nite set,

• for every ω ∈ Ω we have {ω} ∈ A,

• every singleton subset of Ω has the same probability.

Obviously, if Ω contains exactly n elements, then for every ω ∈ Ω we get

P ({ω}) =
1

n

In particular, if the event A ⊂ Ω consists of k elements, then

P (A) =
k

n

This observation can be interpreted as the probability of A can be given like:

P (A) =
number of favorable outcomes
total number of outcomes

(14.1)

The formula (14.1) will be called the classical formula.

Example 14.2 A regular playing die is tossed twice in a row. What is the
probability that the sum of the two numbers is exactly 7?

95
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Let A denote the event that the sum is 7. Clearly, the sample space Ω con-
tains 36 elements (total number of outcomes), while A is a subset of 6 elements
containing the pairs (1, 6), (6, 1), (2, 5), (5, 2), (3, 4), (4, 3) (favorable outcomes).
Consequently

P (A) =
6

36
=

1

6

by making use of the classical formula (14.1).

Example 14.3 From a deck of 52 playing cards we draw 5 cards at random.
Find the probability that either all 5 cards are clubs, or at least one of them is
an Ace?

Introduce the following notations:

A = {all 5 cards are clubs} B = {at least one of them is Ace}

Obviously we are looking for P (A ∪ B). Since the draws of any 5 cards are
equally likely, therefore:

P (A) =

(
13
5

)(
52
5

) P (B) = 1−
(
48
5

)(
52
5

)
and further:

P (A ∩B) =

(
12
4

)(
52
5

)
By using the additive rule

P (A ∪B) = P (A) + P (B)− P (A ∩B) .

Example 14.4 On a seasonal sale in a supermarket there are 10 di�erent pairs
of shoes in a basket. A thief quickly grabs 4 pieces of shoes from the basket at
random and runs away. What is the probability that he gets at least 1 complete
pair?

Below we outline two approaches, but only one of them is correct.

• First select one pair, the other two pieces of shoes can be taken arbitrarily,
another pair, or any two of the remaining shoes, i.e.:

10
(
18
2

)(
20
4

)
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• Find the probability of not having a complete pair at all. This can be
done by selecting a single shoe, and then putting its matching pair aside.
Keep in mind that the order of the selection does not count. Then passing
to the complement event, we obtain

1−
20·18·16·14

4!(
20
4

)
Check out that the two probabilities do not coincide! Which one is correct (if
any)?

Example 14.5 Keep tossing a die until 6 comes out for the �rst time. What
is the probability that we need an even number of tosses?

Let A stand for the event that we need an even number of tosses and Ak is
the event that we need k tosses, respectively. Then we have (verify!)

P (Ak) =

(
5

6

)k−1
· 1

6

for every k = 1, 2, . . . The event A can be expressed like this:

A = A2 ∪A4 ∪ . . . =

∞⋃
k=1

A2k

On the right hand side the events mutually exclude each other, hence

P (A) =

∞∑
k=1

P (A2k) =

∞∑
k=1

(
5

6

)2k−1

· 1

6
=

5

11

14.2 Sampling without replacement

Consider a set of N objects so thatm of them are defective. Select a sample of n
objects from the whole set at random, without replacement (n ≤ m). Denote by
Ak the event, that the sample contains exactly k defective objects (0 ≤ k ≤ n).
Then

P (Ak) =

(
m
k

)
·
(
N−m
n−k

)(
N
n

)
which we call the formula of sampling without replacement.

Example 14.6 From a deck of 52 playing cards we draw 5 cards at random
without replacement. Find the probability that we selected exactly 2 diamonds.
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Let A denote the given event. Making use of our formula we get

P (A) =

(
13
2

)
·
(
39
3

)(
52
5

) .

In this argument the diamonds are the "defective objects".

Example 14.7 Determine the probability that in Hungarian lottery (5 winners
out of 90) we have at least 2 winning numbers on a lottery ticket �lled in at
random.

Denote by A the event that we have 2 winning numbers, and by Ak the event
that we have exactly k winning numbers on our ticket. Clearly, the events Ak are
mutually exclusive for k = 2, . . . , 5. On the other hand A = A2 ∪A3 ∪A4 ∪A5,
and this implies

P (A) =

5∑
k=2

P (Ak) =

5∑
k=2

(
5
k

)
·
(

85
5−k
)(

90
5

)
since the probability of the disjoint union is the sum of the probabilities.

Example 14.8 From a deck of 52 playing cards we select 5 cards at random,
without replacement. What is the probability that all 4 suits (clubs, diamonds,
hearts, spades) are represented in the sample?

Examine the following argument. Let A denote the event that all 4 suits
appear in the sample of 5 cards. Since the choice of any 5 cards is equally likely,
we deal with a classical probability space.

In order to �nd out the number of favorable outcomes, take into account
that we have 13 options for each suit. Once one card from each suit has been
taken, then any card can be chosen from the remaining 48 cards.

The total number of outcomes: as many as the number of selections of 5
cards out of 52. So:

P (A) =
134 · 48(

52
5

)
Is this the correct solution? If not, how could it be �xed?

14.3 Sampling with replacement

Consider again the set of N objects so that m of them are defective. Select n
objects at random from the whole set, consecutively one after another with re-
placement. Let Ak denote the event that the sample contains exactly k defective
items.
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Examine the draws of di�erent orders. Since the selection of k defectives
and n− k non-defectives in any order admits the probability

mk · (N −m)n−k

Nn
=
(m
N

)k (
1− m

N

)n−k
and we have exactly

(
n
k

)
options for such selections, moreover they mutually

exclude each other, we receive

P (Ak) =

(
n

k

)(m
N

)k (
1− m

N

)n−k
This equality is called the formula of sampling with replacement.

Example 14.9 Take 5 cards out of a deck of 52 cards at random, successively
with replacement. (The card taken at a time is always put back.) Find the
probability that this way

(a) exactly 2 diamonds are selected,

(b) at least 2 diamonds are selected.

Introduce the event Ak which means that exactly k diamonds are selected.
Then

(a) P (A2) =

(
5

2

)(
1

4

)2(
1− 1

4

)3

and

(b) P (A2 ∪ . . . ∪A5) =

5∑
k=2

(
5

k

)(
1

4

)k (
3

4

)5−k

because the events A2, . . . , A5 are mutually exclusive.

14.4 The Bernoulli experiment

The argument above can be generalized the following way. Suppose that the
probability of an event A in a given experiment is a speci�c number 0 ≤ p ≤ 1.

Let us assume that we carry out this experiment n times in a row (indepen-
dently of each other) and every time we observe whether or not A occurs. This
procedure is called the Bernoulli experiment.

Let 0 ≤ k ≤ n be a given integer. Denote by Ak the event that A occurs
exactly k times out of the n trials.

Following the reasoning, analogous to the previos section, we immediately
get

P (Ak) =

(
n

k

)
pk(1− p)n−k
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for every integer k = 0, 1, . . . , n.

Example 14.10 In the Hungarian lottery we say that a lottery ticket is a
winning ticket, if it contains at least two winning numbers. Suppose we purchase
20 tickets and �ll in them at random (independently of each other). Find the
probability that we will have at least 5 winning tickets.

For just one ticket the probability of being a winning ticket is:

p =

5∑
k=2

(
5
k

)
·
(

85
5−k
)(

90
5

)
Since this is true for every ticket, and the tickets are �lled in independently
from each other, this problem can be regarded as a Bernoulli experiment, with
the parameter p speci�ed above. Therefore, applying our formula:

20∑
k=5

(
20

k

)
pk(1− p)20−k

where p is the probability given above.

Recitation and Exercises

1. Reading: Textbook-2, Sections 2.1, 2.2, 2.3, 2.4, 2.5.

2. Homework: Textbook-2, Exercises 2.20, 2.39, 2.42, 2.48, 2.64, 2.71, 2.72,
2. 113, 2.114, 2.115, 2.116.

3. Review: Highschool Combinatorics and Binomial Theorem (Textbook-2,
Section 2.3), and "Probability Exercises"
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Conditional probability and

Bayes' Rule

15.1 Conditional probability

In several problems we need to �nd the probability of the event A under the a
priori condition that a certain event B occured. In such problems we take into
account only those elements of the sample space, which also belong to B.

This actually means that the sample space Ω is reduced to the subset B,
and we calculate the (conditional) probability of A with respect to B.

De�nition 15.1 Consider the probability space (Ω,A, P ) and an event B ∈ A
so that P (B) 6= 0. The conditional probability of the event A ∈ A with respect
to B (read: probability of A given B) is de�ned by the equality:

P (A|B) =
P (A ∩B)

P (B)

Example 15.2 We toss a pair of dice, but we cannot see the outcome. Someone
tells us that one of them is a 5. What is the probability that other one is 6?

ATTENTION! The answer is not 1/6 for the following reason!

Let A and B denote the following events:

B = {one of the tosses is 5} A = {the other one is 6}

On the one hand P (B) = 11/36 since there are 11 pairs that contain 5. On the
other hand A ∩B = {(5, 6), (6, 5)}, and hence P (A ∩B) = 2/36. Therefore:

P (A|B) =
P (A ∩B)

P (B)
=

2/36

11/36
=

2

11

101
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Example 15.3 We are looking for a friend in the university main building.
He can be in 5 rooms equally likely. The probability that he is in fact in the
building is 0 < p < 1. We have checked 4 of the 5 rooms, and he was in none of
them. What is the probability that he is in the �fth room?

Let Ak denote the event that our friend is in room number k (k = 1, . . . 5),
which means P (A1 ∪ . . .∪A5) = p. Since the events Ak are mutually exclusive,
this implies that P (Ak) = p/5 for every index k. Therefore, in view of the De
Morgan Rule we obtain:

P (A5|A1 ∩ . . . ∩A4) = P (A5|A1 ∪ . . . ∪A4)

=
P (A5 ∩ (A1 ∪ . . . ∪A4))

P (A1 ∪ . . . ∪A4)

Obviously (think about it!):

A5 ⊂ A1 ∪ . . . ∪A4

and hence
P (A5 ∩ (A1 ∪ . . . ∪A4)) = P (A5)

Consequently, the desired conditional probability is:

P (A5|A1 ∩ . . . ∩A4) = P (A5|A1 ∪ . . . ∪A4)

=
P (A5 ∩ (A1 ∪ . . . ∪A4))

P (A1 ∪ . . . ∪A4)

=
P (A5)

P (A1 ∪ . . . ∪A4)
=

p/5

1− 4p/5
=

p

5− 4p

15.2 Independence

Consider the following simple example. Toss a die twice in a row, and we cannot
see the result. Someone tells us that the �rst outcome is an odd number. Find
the probability that the sum of the two numbers is 7.

Introduce the events A and B the following way:

A = {the sum is 7} B = {the �rst outcome is odd}

Then, by the de�nition of the conditional probability

P (A|B) =
P (A ∩B)

P (B)
=

3/36

18/36
=

1

6
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In view of one of a previous example this means

P (A|B) = P (A)

that is "the occurance of B has no impact on the probability of A". This fact
is expressed like "the event A is independent of the event B".

In case of P (B) 6= 0 the condition P (A|B) = P (A) is equivalent to the
equality:

P (A ∩B) = P (A) · P (B) (15.1)

Since we �gure that independence is a symmetric relation (i.e. if A is indepen-
dent of B, then B is also independent of A) and the above equality is visibly
symmetric, relation (15.1) can serve as a comfortable de�nition for indepen-
dence.

De�nition 15.4 Let (Ω,A, P ) be a probability space, and A,B ∈ A are
observable events. We say that A and B are independent , if they ful�ll the
condition (15.1).

Example 15.5 From a deck of 52 cards we draw 2 cards in succession with
replacement. Find the probability that the �rst draw is a diamond, and the
second draw is an Ace.

Introduce the following events:

A = {�rst draw is a diamond} B = {second draw is an Ace}

Then

P (A ∩B) =
13 · 4
522

=
13

52
· 4

52
= P (A) · P (B)

that tells us that the events A and B are independent.

ATTENTION! We NEVER argue like: since the events A and B are
"visibly" independent, therefore P (A∩B) = P (A) ·P (B). On the contrary: we
conclude the independence of events by verifying this equality!

15.3 Theorem of Total Probability

Example 15.6 There are 3 identical envelopes on our desk,

1. the �rst contains 2 of 1000 Ft bills and 3 of 2000 Ft bills (banknotes),

2. the second contains 5 of 1000 Ft bills and 2 of 2000 Ft bills,

3. the third contains 5 of 2000 Ft bills.
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We select one of the envelopes at random and draw one of the bills from the
envelope. What is the probability that we take a 2000 Ft bill?

Let A denote the event that we draw a 2000 Ft bill. The probability P (A)
would be easy to determine if we knew, which envelope is selected. In particular,
if Bk stands for the event that envelope k is selected, then the conditional
probabilities P (A|Bk) are 3/5, 2/7 and 1 respectively.

This observation immediately gives an idea of how to solve the problem. The
events Bk are mutually exclusive and their union is the certain event. Thus:

A = A ∩ Ω = A ∩ (B1 ∪B2 ∪B3) = (A ∩B1) ∪ (A ∩B2) ∪ (A ∩B3)

Since the events on the right-hand side are exclusive:

P (A) = P (A ∩B1) + P (A ∩B2) + P (A ∩B3)

= P (A|B1)P (B1) + P (A|B2)P (B2) + P (A|B3)P (B3)

=
3

5
· 1

3
+

2

7
· 1

3
+ 1 · 1

3

The argument above can be exteded to an arbitrary number of events Bk.
This leads us to the following de�nition.

De�nition 15.7 We say that the observable events B1, B2, . . . ∈ A form a
partition of the sample space, if none of them has probability zero, and further

1. they are mutually exclusive, i.e. Bi ∩Bj = ∅ if i 6= j,

2. one of them occurs, i.e. B1 ∪B2 ∪ . . . = Ω.

Following the analogous argument of Example 15.6 for an arbitrary number
of events Bk, we come up with the following theorem.

Theorem 15.8 (Theorem of Total Probability) Let us suppose that in the
probability space (Ω,A, P ) the events B1, B2, . . . form a partition of the sample
space. Then for any event A ∈ A we have

P (A) = P (A|B1)P (B1) + P (A|B2)P (B2) + . . .

Proof. Indeed, if the events Bk form a partition of the sample space, then

A = (A ∩B1) ∪ (A ∩B2) ∪ (A ∩B3) ∪ . . .
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where the terms of the union are mutually exclusive. Thus:

P (A) = P (A ∩B1) + P (A ∩B2) + P (A ∩B3) + . . .

By the very de�nition of the conditional probability, for every index k

P (A ∩Bk) = P (A|Bk) · P (Bk)

and the theorem ensues. �

Example 15.9 If the probability that the number of incoming calls to a call
center is n on a given day is given by 0 < qn < 1, and every call is a wrong
number with probability 0 < p < 1 (independently of each other), �nd the
probability that the number of wrong calls is exactly k on that day.

Introduce the following notations. Let A be the event that the center receives
k wrong calls, and Bn is the event that the total number of incoming calls is n.
In this case the events Bn form a partition of the sample space, hence by the
theorem of total probability

P (A) =

∞∑
n=1

P (A|Bn) · P (Bn) =

∞∑
n=k

qn

(
n

k

)
pk(1− p)n−k

In fact, for n ≥ k the number of wrong calls can be regarded as the outcome of
a Bernoulli experiment: how many wrong calls do we have out of n incoming
calls. Keep in mind that we have P (A|Bn) = 0, for n < k.

15.4 Bayes' Rule

Let us return to Example 15.6. Assume that someone has performed the draw
(we did not see it) and tells us that the draw is a 2000 Ft bill. What is the
probability that the bill was taken from the �rst envelope?

Using our former notations, we need to �nd the conditional probability
P (B1|A).

P (B1|A) =
P (A ∩B1)

P (A)
=
P (A|B1)P (B1)

P (A)

The denominator of the fraction on the right-hand side can be evaluated by the
theorem of total probability:

P (B1|A) =
P (A|B1)P (B1)

P (A|B1)P (B1) + P (A|B2)P (B2) + P (A|B3)P (B3)

=
3
5 ·

1
3

3
5 ·

1
3 + 2

7 ·
1
3 + 1 · 13
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This argument can be extended to any partition of the sample space.

Theorem 15.10 (Bayes' Rule) Let us suppose that in the probability space
(Ω,A, P ) the events B1, B2, . . . form a partition of the sample space. Then for
any event A ∈ A, P (A) 6= 0 and any index i we have

P (Bi|A) =
P (A|Bi)P (Bi)

P (A|B1)P (B1) + P (A|B2)P (B2) + . . .

Proof. Indeed, by the de�nition of the conditional probability

P (Bi|A) =
P (A ∩Bi)
P (A)

=
P (A|Bi)P (Bi)

P (A)
,

and our statement is proven by applying the theorem of total probability. �

Example 15.11 For instance, in our call center Example 15.9 the probability
that the number of incoming calls on a given day is i provided that exactly k
wrong calls have been registered is

P (Bi|A) =
qi
(
i
k

)
pk(1− p)i−k∑∞

n=k qn
(
n
k

)
pk(1− p)n−k

for i ≥ k, while this probability is 0, for i < k.

Recitation and Exercises

1. Reading: Textbook-2, Sections 2.6 and 2.7

2. Homework: Textbook-2, Exercises 2.80, 2.81, 2.87, 2.95, 2.97, 2.100, 2.109,
2.118

3. Review: Highschool Combinatorics and Binomial Theorem (Textbook-2,
Section 2.3), and "Probability Exercises"



Chapter 16

Random variables and

distributions

16.1 Random variables

De�nition 16.1 Consider a probability space (Ω,A, P ). The function

X : Ω→ R

is called random variable, if for any x ∈ R

{X < x} = {ω ∈ Ω : X(ω) < x} ∈ A

that is all level sets are observable (and hence possess a probability).

In the examples below specify the range R of the given random variables!

Example 16.2

1. Toss a pair of dice. Let X denote the sum of the numbers. Then R =
{2, 3, . . . , 12}

2. Let X be the least winning number in Hungarian lottery. Then R =
{1, 2, . . . , 86}

3. Keep tossing a die until 6 comes out for the �rst time. Denote by X the
number of tosses. Then R = N.

4. Pick a point arbitrarily on the unit disc (with center at the origin and
radius 1). Let X denote the distance of the point from the origin. Then
R = [0, 1].
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De�nition 16.3 We say that a random variable is discrete, if its range is
a countable set (�nite or in�nite). That is the elements of the range can be
arranged in a �nite or in�nite sequence.

In our examples the �rst three random variables are discrete, but the fourth
is not.

16.2 Distribution of discrete variables

De�nition 16.4 Let X be a discrete random variable, whose range is R =
{x1, x2, . . .}. The sequence

pk = P (X = xk) , k = 1, 2, . . .

is called the distribution of X.

Example 16.5 Consider our introductory examples for random variables

1. If X means the sum of the numbers when a pair of dice tossed, then the
distribution can be given by the following chart :

xk 2 3 4 . . . 12
pk

1
36

2
36

3
36 . . . 1

36

2. If X means the least winning number in lottery, then the distribution can
be given by the following formula:

pk =

(
90−k

4

)(
90
5

) k = 1, 2, . . . 86

3. If X means the number of tosses needed to get the �rst 6, the distribution
of X is:

pk =

(
5

6

)k−1
· 1

6
k = 1, 2, . . .

Unlike in the previous two examples, this distribution is an in�nite se-
quence.

The most important properties of distributions are summed up in the fol-
lowing theorem.

Theorem 16.6 Consider a discrete random variable X with range R =
{x1, x2, . . .} and distribution pk = P (X = xk), k = 1, 2, . . .. Then
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• 0 ≤ pk ≤ 1 for all indeces k = 1, 2, . . ..

• p1 + p2 + . . . = 1.

• If a < b any real numbers, then

P (a < X < b) =
∑

a<xk<b

pk

where the sum is taken for all indeces k such that the inequality a <
xk < b holds true. The last statement remains true if instead of the strict
inequalities, the signs ≤ are inserted simultaneously on both sides.

16.3 The cumulative distribution function

De�nition 16.7 Consider a probability space (Ω,A, P ), and a random variable
X : Ω→ R. For every x ∈ R set

F (x) = P (X < x) .

The function F : R→ [0, 1] is called the cumulative distribution function of X.
(Or sometimes brie�y distribution function.)

Example 16.8 It is easy to see that the distribution function of the random
variable X de�ned in the introductory example 4, is

F (x) =

 0 if x ≤ 0
x2 if 0 < x ≤ 1
1 if x > 1

(16.1)

In fact we mean that the probability that the randomly picked point belongs
to a given subset of the unit disc is proportional to the area of the subset. In
particular, for instance P (0 ≤ X < 1/2) = 1/4.

In several problems in probability and statistics, and their applications we
need to �nd a a probability of the form P (a ≤ X < b). This probability can
be expressed in term of the distribution function. The basic properties of the
distribution function are summarized in the theorem below.

Theorem 16.9 Let X be a random variable and consider its distribution
function F .

• For every x ∈ R we have 0 ≤ F (x) ≤ 1.
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• F is monotone increasing and at every point continuous from the left.

• lim
x→−∞

F (x) = 0 and lim
x→+∞

F (x) = 1.

• For any real numbers a < b we have

P (a ≤ X < b) = F (b)− F (a) .

If the range of a discrete random variable X is given by R = {x1, x2, . . .},
where x1 < x2 < . . ., and X takes these values with the probabilities p1, p2, . . .
respectively, then the distribution function of X has the form:

F (x) =

{
0 if x ≤ x1
p1 + . . .+ pk if xk < x ≤ xk+1

for each k = 1, 2, . . .. Sketch the graph!

This tells us that in this case the distribution function is piecewise constant.
Instead of using the formula P (a ≤ X < b) = F (b) − F (a), it is reasonable to
collect all elements of the range of X that are in the open interval (a, b). In
particular, if P (X = xk) = pk for every k, then

P (a ≤ X < b) =
∑

a≤xk<b

pk

On the right-hand side only the probabilities P (X = xk) appear, therefore, it
is more convenient to rely on the distribution X.

16.4 The density function

De�nition 16.10 We say that X is continuously distributed, if there exists
an integrable function f on the real line with

F (x) =

∫ x

−∞
f(t) dt

for every x ∈ R. In this case the function f is called the density function of X.

For instance, in the example (16.1) we can easily verify that

f(t) =

{
2t if 0 < t < 1
0 elsewhere

If the random variable X is continuously distributed, then the distribution func-
tion F is continuous. Moreover, at every point x where the density function f
is continuous, the distribution function F is di�erentiable, namely

F ′(x) = f(x)
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Theorem 16.11 If X is continuously distributed and f is its density function,
then for any real numbers a < b

P (a ≤ X < b) =

∫ b

a

f(t) dt

What can we say about the probability that the random variable X takes a
single point? Let a ∈ R be any real number, then we conclude that

P (X = a) = P (

∞⋂
n=1

{a ≤ X < a+
1

n
}) = lim

n→∞
P (a ≤ X < a+

1

n
)

= lim
n→∞

(F (a+
1

n
)− F (a)) = lim

x→a+
F (x)− F (a)

Consequently P (X = a) equals the "jump" of F at the point a. ATTEN-
TION: Why can we pass to the limit in the �rst line of the array formula?

A simple consequence of the previous argument is that P (X = a) = 0 if
and only if F is continuous at the point a. In particular, if X is continuously
distributed, then F is continuous on the whole real line, hence for any real
numbers a < b we get

P (a < X < b) = P (a ≤ X ≤ b)

We sum up the basic properties of density functions.

Theorem 16.12 If f is the density function of the random variable X, then

1. f(x) ≥ 0 for every x ∈ R,

2. ∫ +∞

−∞
f(x) dx = 1 ,

3. if a < b are any real numbers, then

P (a < X < b) = P (a ≤ X ≤ b) =

∫ b

a

f(x) dx .

Example 16.13 Let us suppose that the density function of X is given by

f(x) =

 x if 0 < x ≤ 1
2− x if 1 < x < 2
0 elsewhere
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ATTENTION! Verify that f ful�lls all conditions of the previous theorem, so
it is in fact a density function.

Then, for instance

P (0 ≤ X ≤ 3/2) = P (0 < X < 3/2) =

∫ 3/2

0

f(x) dx

=

∫ 1

0

x dx+

∫ 3/2

1

(2− x) dx

= 1−
∫ 2

3/2

(2− x) dx =
7

8

Recitation and Exercises

1. Reading: Textbook-2, Sections 3.1, 3.2 and 3.3

2. Homework: Textbook-2, Exercises 3.7, 3.9, 3.11, 3.14, 3.21, 3.22, 3.25,
3.26, 3.32 and 3.36

3. Review: Calculus, integration and in�nite series and "Probability Exer-
cises"



Chapter 17

Mean and variance

In everyday language by the mean (or expected value) of a random variable we
think of the weighted average, by the standard deviation we think of the average
deviation from the mean. Precise de�nitions will follow below.

17.1 Mean of discrete distributions

De�nition 17.1 Consider a discrete random variable X whose distribution is
given by

P (X = xk) = pk k = 1, 2, . . .

We say that X has a mean (or expected value) if the series
∑∞
k=1 |xk| · pk is

convergent. In this case the sum

E(X) =

∞∑
k=1

xk · pk

is called the mean (or expected value) of X.

Remark that the convergence of the series
∑∞
k=1 |xk| · pk is an important

condition, because otherwise the sum E(X) might depend on the rearrangement
of the terms.

Example 17.2 Toss a pair of playing dice. Find the expected value of the
sum of the two numbers.

Let X denote the sum of the two numbers, then the distribution of X is
given in Example 16.5. Therefore, the mean of the sum is:

E(X) =

12∑
k=2

kpk = 2 · 1

36
+ 3 · 2

36
+ . . .+ 12 · 1

36
= 7 .

113



114 CHAPTER 17. MEAN AND VARIANCE

Example 17.3 Take a sample of 5 cards from a deck of 52 playing cards at
random. Find the expected number of diamonds in the sample.

Denote by X the number of diamonds in the sample. By using sampling
without replacement, the distribution of X is given by:

P (X = k) =

(
13
k

)
·
(

39
5−k
)(

52
5

) k = 0, . . . , 5

Hence, the expected value is:

E(X) =

5∑
k=0

kP (X = k) =

5∑
k=0

k

(
13
k

)
·
(

39
5−k
)(

52
5

)
=

13(
52
2

) 5∑
k=1

(
12

k − 1

)(
39

4− (k − 1)

)
=

13(
52
5

) · (51

4

)
=

5

4
.

Example 17.4 Consider the Bernoulli experiment that we discussed in Section
14.4. and determine the expected number of occurances of the event A out of
n trials.

Let X denote the number of times A occurs, then the distribution of X is:

P (X = k) =

(
n

k

)
pk(1− p)n−k k = 0, 1, . . . , n

By virtue of the binomial theorem, the mean of X is:

E(X) =

n∑
k=0

k

(
n

k

)
pk(1− p)n−k

= np

n∑
k=1

(n− 1)!

(k − 1)!(n− k)!
pk−1(1− p)n−k

= np

n∑
k=1

(
n− 1

k − 1

)
pk−1(1− p)n−k = np
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17.2 Mean of in�nite distributions

In this section we investigate discrete random variables with in�nite range.

Example 17.5 We keep tossing a die until 6 comes out for the �rst time.
What is the expected number of tosses?

If X means the number of tosses, then the distribution of X is given by

P (X = k) =

(
5

6

)k−1
· 1

6
k = 1, 2, . . .

Thus the expected value is

E(X) =
∞∑
k=1

k ·
(

5

6

)k−1
· 1

6
=

1

6
· 1

(1− 5/6)2
= 6

Example 17.6 Let λ be a given positive number, and consider a random
variable X with the following distribution

P (X = k) =
λk

k!
e−λ k = 0, 1, 2, . . .

In view of the power series of the exponential function, the mean of X is:

E(X) =

∞∑
k=0

k
λk

k!
e−λ = λ

∞∑
k=1

λk−1

(k − 1)!
e−λ

= λe−λ
∞∑
i=0

λi

i!
= λe−λeλ = λ

Example 17.7 In a box there is a black and a white ball. We take one ball at
random. If it is black, we put it back, and add another black ball. We continue
this process until the white ball is selected. Find the expected number of draws.

If X stands for the number of draws, then the distribution of X can be given
like P (X = 1) = 1/2, and:

P (X = k) =
1

2
· 2

3
· 3

4
· · · k − 1

k
· 1

k + 1
=

1

k(k + 1)
, k = 2, 3, . . .

Therefore, for the mean of X we obtain the following in�nite series:

E(X) =

∞∑
k=1

kP (X = k) =

∞∑
k=1

k
1

k(k + 1)
=

∞∑
k=1

1

k + 1

Apart from the �rst term, this series exactly coincides with the harmonic series,
which is divergent. Consequently, this random variable does not have a mean.
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17.3 Mean of continuous distributions

De�nition 17.8 Let X be a continuously distributed random variable with
density function f . We say that X has a mean if the improper integral

∫∞
−∞ |x| ·

f(x) dx is convergent. In this case the integral

E(X) =

∫ ∞
−∞

x · f(x) dx

is called the mean (or expected value) of X.

Example 17.9 Verify that the function f below de�nes a density function

f(x) =
1

π
· 1

1 + x2
−∞ < x <∞

(this is the so-called Cauchy distribution), but it has no mean, since the im-
proper integral

1

π

∫ ∞
−∞

x

1 + x2
dx

is divergent. See Example 9.5 for the details.

Example 17.10 Consider an interval [a, b] on the real line, and suppose the
density function of the random variable X is given by

f(x) =

{
1
b−a if a < x < b

0 elsewhere

Verify that f is really a density function! Then the mean of X is

E(X) =

∫ b

a

x

b− a
dx =

1

b− a
· b

2 − a2

2
=
a+ b

2

which is the midpoint of the interval [a, b].

17.4 Basic properties of the mean

The mean E(X2) is called the second moment of the random variable X (if it
exists). It can be shown that

E(X2) =


∑
k

x2kpk if X is discrete∫ ∞
−∞

x2f(x) dx if X is continuous
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Below two fundamental properties of the mean are formulated.

Theorem 17.11

1. If X has a mean, then for any real numbers α and β E(αX + β) =
αE(X) + β.

2. If E(X), E(X2) exist, then E(αX2 + βX + γ) = αE(X2) + βE(X) + γ.

Example 17.12 Let λ be a positive number, and assume that the density
function of X is given by

f(x) =

{
λe−λx if x > 0
0 elsewhere.

Based on Example 9.3 this is really a density function, since∫ ∞
0

f(x) dx = 1 .

On the other hand, Example 9.8 shows that the mean is

E(X) =

∫ ∞
0

xf(x) dx =
1

λ
.

The second moment can be evaluated by integration by parts (see Example 9.9):

E(X2) =

∫ ∞
0

x2f(x) dx =
2

λ2
.

17.5 Variance and standard deviation

The variance of a random variable is the average squared deviation from the
mean.

De�nition 17.13 The variance of a random variable of X (if it exists) is
de�ned by

V ar(X) = E((X − E(X))2)

Then the standard deviation of X is D(X) =
√
V ar(X).

Sometimes the notation D2(X) is also used for the variance (for obvious
reason).
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The variance can be evaluated in the following simpli�ed way:

V ar(X) = E((X − E(X))2) = E(X2 − 2E(X)X + E(X)2)

= E(X2)− 2E(X)2 + E(X)2 = E(X2)− E(X)2

Basic properties of the variance:

V ar(αX + β) = α2V ar(X), D(αX + β) = |α| ·D(X)

Verify these two directly, based on the de�nition!

Example 17.14 Find the variance and standard deviation of the continu-
ously distributed random variable X in Example 17.12 (where λ > 0 is a given
constant).

V ar(X) = E(X2)− E(X)2 =
2

λ2
− 1

λ2
=

1

λ2
,

and in particular

D(X) =
1

λ

Example 17.15 Consider now the continuously distributed random variable
X examined in Example 17.10. We can calculate the second moment this way:

E(X2) =

∫ ∞
−∞

x2f(x) dx =

∫ b

a

x2

b− a
dx =

1

b− a

[
x3

3

]b
a

=
b3 − a3

3(b− a)
=
b2 + ab+ a2

3

Therefore, the variance is:

V ar(X) = E(X2)− E(X)2 =
b2 + ab+ a2

3
− a2 + 2ab+ b2

4
=

(b− a)2

12

moreover, the standard deviation of X is the square root of the variance:

D(X) =
b− a
2
√

3
.

Recitation and Exercises

1. Reading: Textbook-2, Sections 4.1 and 4.2.

2. Homework: Textbook-2, Exercises 4.1, 4.2, 4.4, 4.8, 4.12, 4.13, 4.14, 4.34,
4.37, 4.38, 4.43 and 4.50

3. Review: Calculus, integration, improper integrals and in�nite series, and
"Probability Exercises"



Chapter 18

Special discrete distributions

This chapter gives a summary of the most widely applied discrete distributions.

18.1 Characteristic distribution

Let (Ω,A, P ) be a probability space and consider an event A ∈ A with P (A) = p,
and 0 < p < 1. Then the random variable

X =

{
1 if A occurs
0 if A does not occur

possesses the distribution

P (X = 0) = 1− p P (X = 1) = p

This is called the characteristic distribution associated with the event A.

Theorem 18.1

• The parameter of the distribution is: 0 < p < 1.

• The mean of this distribution: E(X) = p

• The variance of this distribution: V ar(X) = p(1− p).

Proof. We only need to verify the variance. Since the second moment is
E(X2) = p, the statement ensues. �

119
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18.2 Binomial distribution

Let (Ω,A, P ) be a probability space, and consider the Bernoulli experiment,
where we carry out n independent experiments in a row, and every time we
observe if a given event A occurs. Suppose that P (A) = p, 0 < p < 1 is given.
Let X denote how many times A comes out. By the Bernoulli experiment the
distribution of X is given by

P (X = k) =

(
n

k

)
pk(1− p)n−k k = 0, 1, 2, . . . , n

This distribution is called the binomial distribution.

Theorem 18.2

• The parameters of the distribution: n ∈ N and 0 < p < 1.

• The mean of the distribution: E(X) = np

• The variance of the distribution: V ar(X) = np(1− p).

Proof. In view of Example 17.4 we only need to check the variance First
�nd the second moment.

E(X2) =

n∑
k=1

k2
(
n

k

)
pk(1− p)n−k =

=

n∑
k=2

k(k − 1)

(
n

k

)
pk(1− p)n−k +

n∑
k=1

k

(
n

k

)
pk(1− p)n−k

= n(n− 1)p2
n∑
k=2

(
n− 2

k − 2

)
pk−2(1− p)n−k + np = (n2 − n)p2 + np .

Therefore, the variance is

V ar(X) = E(X2)− E(X)2 = n(n− 1)p2 + np− n2p2 = np(1− p)

where we observed that the second sum in the second line is precisely the mean.
�

18.3 Hypergeometric distribution

Examine the following sampling without replacement problem. Consider a set
of N objects in which m of them are defective. Select a sample of n objects
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without replacement from the whole set (n ≤ m). Let X denote the number of
defective objects in the sample. Then the distribution of X is:

P (X = k) =

(
m
k

)
·
(
N−m
n−k

)(
N
n

) k = 0, 1, 2, . . . , n

This distribution is called the hypergeometric distribution.

Theorem 18.3

• The parameters of the distribution: N,m, n ∈ N.

• The mean of the distribution:

E(X) = n · m
N

• The variance of the distribution:

V ar(X) =
N − n
N − 1

· n · m
N

(
1− m

N

)
.

Proof. By applying the argument of Example 17.3, we again only have to
calculate the variance. First �nd the second moment.

E(X2) =

n∑
k=1

k2
(
m
k

)(
N−m
n−k

)(
N
n

) =

n∑
k=2

k(k − 1)

(
m
k

)(
N−m
n−k

)(
N
n

) +

n∑
k=1

k

(
m
k

)(
N−m
n−k

)(
N
n

)
=

m(m− 1)n(n− 1)

N(N − 1)

n∑
k=2

(
m−2
k−2

)
·
(
N−m
n−k+2

)(
N−2
n−2

) + n
m

N

=
m(m− 1)n(n− 1)

N(N − 1)
+ n

m

N
.

Then we conclude

V ar(X) =
m(m− 1)n(n− 1)

N(N − 1)
+ n

m

N
− n2m

2

N2
=
N − n
N − 1

· n · m
N

(
1− m

N

)
,

just as we stated. �

18.4 Geometric distribution

Take a probability space (Ω,A, P ), and consider an event A such that P (A) = p,
wher 0 < p < 1 is given. Keep performing the experiment until the event A
occurs for the �rst time. Let X denote the number of trials. The distribution
of X is given by:

P (X = k) = (1− p)k−1p k = 1, 2, . . .
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This distribution is called the geometric distribution.

Theorem 18.4

• The parameter of the distribution: 0 < p < 1.

• The mean of the distribution:

E(X) =
1

p

• The variance of the distribution:

V ar(X) =
1− p
p2

.

Proof. The mean of this distribution is easily obtained by following the
argument of Example 17.5, so we only need to �nd the variance. The second
moment can be evaluated the following way. Using the second derivative of the
power series at |x| < 1, we have

∞∑
k=2

k(k − 1)xk−2 =
2

(1− x)3

If we employ this identity with x = 1− p we receive

E(X2) =

∞∑
k=1

k2(1− p)k−1p =

∞∑
k=2

k(k − 1)(1− p)k−1p+

∞∑
k=1

k(1− p)k−1p

= p(1− p)
∞∑
k=1

k(k − 1)(1− p)k−2 +
1

p
=

2p(1− p)
p3

+
1

p
.

Thus we get

V ar(X) = E(X2)− E(X)2 =
2p(1− p)

p3
+

1

p
− 1

p2
=

1− p
p2

and this is what we needed. �

18.5 Poisson distribution

Suppose that X is a random variable, whose range is {0}∪N and its distribution
is de�ned by

P (X = k) =
λk

k!
e−λ k = 0, 1, 2, . . .

wher λ > 0 is a given number.
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It is not hard to see that we really de�ned a distribution. Indeed,

∞∑
k=0

λk

k!
e−λ = e−λ · eλ = 1

based on the power series of the natural exponential function. This in�nite
distribution is called the Poisson distribution.

Theorem 18.5

• The parameter of the distribution: λ > 0.

• The mean of the distribution: E(X) = λ,

• The variance of the distribution: V ar(X) = λ.

Proof. In view of Example 17.6 we only have to calculate the variance. The
second moment is obtained as follows.

E(X2) =

∞∑
k=1

k2
λk

k!
e−λ =

∞∑
k=1

k(k − 1)
λk

k!
e−λ +

∞∑
k=1

k
λk

k!
e−λ

= λ2
∞∑
k=2

λk−2

(k − 2)!
e−λ + λ .

Hence, the variance is

V ar(X) = E(X2)− E(X)2 = λ2 + λ− λ2 = λ

and that completes the proof. �

Let us remark that the Poisson distribution can be regarded as the "limit
distribution" of the binomial distribution as it is explained in the following.

Theorem 18.6 If λ > 0 is �xed and 0 < pn < 1 is a sequence with npn = λ,
then

lim
n→∞

(
n

k

)
pkn(1− pn)n−k =

λk

k!
e−λ

for every k = 0, 1, 2, . . ..

Proof. Indeed, for each �xed index k we have(
n

k

)
pkn(1− pn)n−k =

(
n

k

)(
λ

n

)k (
1− λ

n

)n−k
=

n(n− 1) . . . (n− k + 1)

nk
· λ

k

k!

(
1− λ

n

)n(
1− λ

n

)−k
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Here examine the limits of the four factors separately. It is easy to see that they
are 1, λk/k!, e−λ and 1 respectively. That proves our theorem. �

Practically, this theorem means that for large values of n and for small values
of p the binomial distribution can be approximated by the Poisson distribution,
i.e. (

n

k

)
pkn(1− pn)n−k ≈ λk

k!
e−λ

for every index 0 ≤ k ≤ n.

Example 18.7 Let us suppose that in a brand new Suzuki Vitara the proba-
bility that the airbag is defective, is 0.002 independently from each other. The
factory announces withdrawal if at least 10 malfunctions are reported for the
2000 cars that are manufactured in a month. Find the probability that no
withdrawal has to be announced.

let X denote the number of defective cars in a given month. Since this is
a Bernoulli-experiment (the probability of malfunction is 0.002 independently
from each other), it follows that X has binomial distribution with parameters
n = 2000 and p = 0.002. Therefore the exact value of the probabilty is

P (X ≤ 9) =

9∑
k=0

(
2000

k

)
0.002k0.9982000−k

which not easy to handle. Based on our theorem, we can give an approximation
of this probability by using the Poisson distribution (we say that "n is su�ciently
large and p is su�ciently small"), moreover λ = np = 4, so

9∑
k=0

(
2000

k

)
0.002k0.9982000−k ≈

9∑
k=0

4k

k!
e−4 ≈ 0.9919

This latter value can be determined by looking up in the Poisson tables that
can be found on page 732 in our Textbook.

Recitation and Exercises

1. Reading: Textbook-2, Sections 5.1, 5.2, 5.3 and 5.5

2. Homework: Textbook-2, Exercises 5.5, 5.9, 5.10, 5.15, 5.27, 5.33, 5.47,
5.56, 5.60, 5.66, 5.70 and 5.72

3. Review: Calculus, integration, improper integrals and in�nite series, and
"Probability Exercises"



Chapter 19

Special continuous

distributions

19.1 Uniform distribution

Let [a, b] be a given �nite interval. Consider a random variable X with the
following density function:

f(x) =

{
1
b−a if a < x < b

0 elsewhere

This random variableX is said to have uniform distribution on the interval [a, b].
The name comes from the fact that the probability that X is in a subinterval
of [a, b] is proportional to the length of the subinterval.

Theorem 19.1

• The parameters of the distribution: a and b, a < b.

• The mean of the distribution:

E(X) =
a+ b

2

• The variance of the distribution:

V ar(X) =
(b− a)2

12
.

Proof. These statements are immediate consequences of the results in Ex-
amples 17.10 and 17.15. �

Example 19.2 Let X be a uniformly distributed random variable with
E(X) = 5 and V ar(X) = 3. Find the probability P (4 < X < 10).
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The unknown endpoints of the interval a and b satisfy the following equa-
tions:

a+ b

2
= 5

(b− a)2

12
= 3

whose solutions are a = 2 and b = 8. Therefore,

P (4 < X < 10) = P (4 < X < 8) =
2

3

since the subinterval beyond [4, 8] comes with 0 probability.

19.2 Exponential distribution

Let λ > 0 be a �xed number. Consider the random variableX with the following
density function

f(x) =

{
λe−λx if x > 0
0 elsewhere

In this case we say that X has exponential distribution. nevezzük.

ATTENTION: Verify that f really de�nes a density function! Sketch the
graph of the function!

Theorem 19.3

• The parameter of the distribution: λ > 0.

• The mean of the distribution: E(X) = 1/λ,

• The variance of the distribution: V ar(X) = 1/λ2.

Proof. Our theorem is an immediate consequence of the eqalities in Exam-
ples 17.12 and 17.14. �

Example 19.4 Consider an exponentially distributed random variable X with
a given parameter λ > 0. Find the probability P (X > E(X)).

Our theorem claims that E(X) = 1/λ, thus

P (X > E(X)) = P

(
X >

1

λ

)
=

∫ ∞
1/λ

λe−λx dx =
[
−e−λx

]∞
1/λ

=
1

e
.
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We say that the exponential distribution is memoryless in the following sense.
If X is exponentially distributed with a given parameter λ > 0, and t, s > 0 are
given positive numbers, then

P (X > t+ s|X > t) = P (X > s) .

Indeed, the event {X > t+ s} implies the event {X > t}, therefore, the condi-
tional probability on the left-hand side can be written like

P (X > t+ s|X > t) =
P (X > t+ s)

P (X > t)
=

1−
∫ t+s
0

λe−λx dx

1−
∫ t
0
λe−λx dx

=
e−λ(t+s)

e−λt
= e−λs = 1−

∫ s

0

λe−λx dx = P (X > s) .

If for instance X denotes the waiting time between two occurances (i.e. two
telephone calls, or two customers, etc.), then the lack of memory means that
the further waiting time does not depend on how much we have been waiting.

Conversely, it can also be proven that if a continuous distribution is memo-
ryless, then it is necessarily the exponential distribution.

There is an interesting relationship between the Poisson distribution and the
exponential distribution. In particular, if the waiting times between successive
occurances are independent, exponentially distributed random variables with
identical parameter λ > 0, then the number of occurances in a unit time inter-
val has Poisson distribution with the same parameter. These features will be
discussed in later chapters.

19.3 The standard normal distribution

Because of the central role of the standard normal distribution we use a distin-
guished notation for its density function and cumulative distribution function.

De�nition 19.5 We say that the random variable Z has standard normal
distribution, if its density function is given by

ϕ(x) =
1√
2π
e−

x2

2 −∞ < x <∞

In view of formula (9.2), we see that ϕ really de�nes a density function.
As an exercise analyze the function ϕ, and show that it possesses the following
properties.

lim
x→−∞

ϕ(x) = lim
x→+∞

ϕ(x) = 0
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moreover ϕ is strictly monotone increasing on the interval (−∞, 0), strictly
monotone decreasing on the interval (0,∞), and reaches its global maximum at
x = 0.

By analyzing the second derivative, we can see that ϕ is convex on the
intervals (−∞, 1) and (1,+∞), while it is concave on the interval (−1, 1), and
consequently has points of in�ection at x = −1 and x = 1 respectively.

EXERCISE: CREATE THE GRAPH OF THE FUNCTION!

Theorem 19.6

• The parameter of the distribution: no parameter.

• The mean of the distribution: E(Z) = 0.

• The variance of the distribution: V ar(Z) = 1.

Proof. Example 9.6 shows that E(Z) = 0, and equality (9.3) tells us that
E(Z2) = 1. Therefore

V ar(Z) = E(Z2)− E(Z)2 = 1 .

as we stated. �

Let Φ denote the standard normal cumulative distribution function, i.e.

Φ(x) =

∫ x

−∞
ϕ(t) dt .

This function has the properties of cumulative distribution functions, but its
interesting feature is that it cannot be expressed explicitly in terms of elementary
functions or their �nite combinations.

Observe however that ϕ is an even function, in other words it is symmetric
with respect to the y-axis. This implies that Φ(0) = 1/2, and further

Φ(−x) = 1− Φ(x) (19.1)

for every real number x.

Example 19.7 Because of its central role in Statistics and other applications
we can �nd tables for the values of the Φ function in most probability textbooks
and spreadsheet programs like the Microsoft Windows O�ce Excel application.
See the tables on pages 735�736 of our Textbook!

If for example Z is a standard normally distributed random variable, the
�nd the probability

P (−2 < Z < 2)

Using the table on page 736 of our Textbook, we get

P (−2 < Z < 2) = Φ(2)− Φ(−2) = Φ(2)− (1− Φ(2)) = 2Φ(2)− 1 =

= 2 · 0.9772− 1 = 0.9544

where we exploited the symmetry property (19.1).
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19.4 Normal distribution

De�nition 19.8 Let m and σ be given real numbers where σ > 0. Let Z be
a standard normally distributed random variable, then the random variable

X = σZ +m

is said to have normal distribution with (m,σ)-parameters (or brie�y (m,σ)-
normal distribution).

Making use of the properties of the standard normal distribution, and the
properties of the mean and the variance (refer to Theorem 17.11) we get the
following theorem for (m,σ)-normal distributions.

Theorem 19.9

• The parameters of the distribution: m ∈ R, σ > 0.

• The mean of the distribution: E(X) = m,

• The variance of the distribution: V ar(X) = σ2.

How can we �nd the cumulative distribution function and the density func-
tion of this random variable X? Let F denote the cumulative distribution
function of X, and take a real number x arbitrarily. Then

F (x) = P (X < x) = P (σZ +m < x) = P

(
Z <

x−m
σ

)
= Φ

(
x−m
σ

)
IMPORTANT! It is vital that σ > 0, so when we divide by σ the inequality will
not change!

We get the density function of X by di�erentiating F : for every x ∈ R we
have

f(x) = F ′(x) =
1

σ
ϕ

(
x−m
σ

)
=

1√
2πσ

e−
(x−m)2

2σ2

by the Chain-Rule. This function has a global maximum at x = m, furthermore
it has points of in�ection at x = m− σ and x = m+ σ respectively. CREATE
A PICTURE!

Example 19.10 For an (m,σ)-normally distributed random variable X the
probability of being in an interval can always be expressed in terms of the
standard normal cumulative distribution function Φ.

Indeed, if a < b are arbitrarily taken real numbers, then

P (a < X < b) = F (b)− F (a) = Φ

(
b−m
σ

)
− Φ

(
a−m
σ

)
.



130 CHAPTER 19. SPECIAL CONTINUOUS DISTRIBUTIONS

For example, for a normally distributed random variable X with parameters
m = 10 and σ = 2 we have

P (7 < X < 13) = F (13)− F (7) = Φ(1.5)− Φ(−1.5) = 2Φ(1.5)− 1 =

= 2 · 0.9332− 1 = 0.8664

where we used the symmetry of Φ, and the tables on page 736 in the Textbook.

Recitation and Exercises

1. Reading: Textbook, Sections 6.1, 6.2, 6.3, 6.4, 6.6

2. Homework: Textbook, Exercises 6.2, 6.3, 6.4, 6.6, 6.7, 6.9, 6.11, 6.15, 6.17,
6.18, 6.45 and 6.46 5.66, 5.70 and 5.72

3. Review: Calculus, integration, improper integrals and in�nite series and
"Probability Exercises"



Chapter 20

Joint distributions

20.1 Joint cumulative distribution function

De�ntion 20.1 Let X and Y be random variables (not necessarily on the
same sample space). For any real numbers x and y the function

F (x, y) = P (X < x, Y < y)

is called the joint cumulative distribution function of X and Y .

The following statement comes directly from the de�nition.

Proposition 20.2 If F is a joint cumulative distribution function, then

lim
x→−∞

F (x, y) = lim
y→−∞

F (x, y) = 0

for any �xed real y and x respectively, moreover

lim
x,y→+∞

F (x, y) = 1

Similarly to the one dimensional case, we separately discuss discrete and
continuous distributions.

20.2 Discrete joint distributions

De�nition 20.3 Assume that the range of the variable X is {x1, x2, . . .}, and
the range of the variable Y is {y1, y2, . . .}. Then the joint distribution of X and
Y is given by

pik = P (X = xi, Y = yk) i = 1, 2, . . . k = 1, 2, . . .
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These values can be arranged in a chart:

y \ x x1 x2 x3 · · ·
y1 p11 p21 p31 · · ·
y2 p12 p22 p32 · · ·
y3 p13 p23 p33 · · ·
...

...
...

...
...

Obviously for all indeces pik ≥ 0 and
∑
i

∑
k pik = 1.

Let A be a subset of the plane. By using the joint distribution, how can we
evaluate the probability P ((X,Y ) ∈ A)? Collect all values xi and yk for which
(xi, yk) ∈ A, then

P ((X,Y ) ∈ A) =
∑

(xi,yk)∈A

pik

Example 20.4 For instance, if we consider the following joint distribution

y \ x 0 1 2 3
0 0.1 0.08 0.13 0.04
1 0.04 0.2 0.08 0
2 0.03 0 0.05 0.25

then for the subset A = {(x, y) ∈ R2 : x+ y ≥ 3} we have:

P (X + Y ≥ 3) = 0.04 + 0.08 + 0.05 + 0.25 = 0.42

A natural question to ask is that based on the joint distribution, how can
we determine the distributions of X and Y alone? As we conclude from the
de�nition

pi = P (X = xi) =
∑
k

pik =
∑
k

P (X = xi, Y = yk) i = 1, 2, . . .

Namely, the probability pi = P (X = xi) can be obtained by taking the sum of
the elements in the i-th column. Therefore, the sums of columns provide the
distribution of X.

In an analogous way,

qk = P (Y = xk) =
∑
i

pik =
∑
i

P (X = xi, Y = yk) k = 1, 2, . . .

which means that the distribution of Y is obtained by taking the sums of rows.

De�nition 20.5 The distributions of X and Y are called the marginal distri-
butions of the joint distribution.
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20.3 Continuous joint distributions

De�nition 20.6 We say that X and Y are continuously distributed, if there
exists a non-negative integrable function f on the plane suvh that for all real
numbers x and y we have

F (x, y) =

∫ x

−∞

∫ y

−∞
f(t, s) ds dt

where F is the joint cumulative distribution function of the random variables
X and Y . This function f is called the joint density function of X and Y .

Clearly, if f is a joint density function, then∫ ∞
−∞

∫ ∞
−∞

f(x, y) dx dy = 1

Example 20.7 Let A be a subset of the plane. How can we �nd the probability
P ((X,Y ) ∈ A)? If f is the joint density function of X and Y , then

P ((X,Y ) ∈ A) =

∫ ∫
A

f(x, y) dy dx

For example if we consider the joint density function

f(x, y) =

{
2
3 (x+ 2y) if 0 < x < 1, 0 < y < 1
0 elsewhere

(20.1)

then for the set A = {(x, y) ∈ R2 : x < 1/2, y < 1/2} we have

P (X < 1/2, Y < 1/2) =
2

3

∫ 1/2

0

∫ 1/2

0

(x+ 2y) dy dx =
1

8

If the joint density function is given, how can we �nd the density of X or
Y alone? It can be shown that if fX denotes the density of X, then for every
point x

fX(x) =

∫ ∞
−∞

f(x, y) dy

and analogously

fY (y) =

∫ ∞
−∞

f(x, y) dx

for every point y.

De�nition 20.8 The functions fX and fY are called the marginal densities
of the joint density function.
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Example 20.9 For instance in the case of the joint density in the previous
example

fX(x) =

∫ ∞
−∞

f(x, y) dy =

{ ∫ 1

0
2
3 (x+ 2y) dy if 0 < x < 1

0 elsewhere

The marginal density of Y in a similar way

fY (y) =

{
1
3 (4y + 1) if 0 < y < 1
0 elsewhere

20.4 Independence

De�nition 20.10 Let X and Y be random variables with joint cumulative
distribution function F . Denote by FX and FY the marginal cumulative distri-
bution functions ofX and Y respectively. We say thatX and Y are independent ,
if

F (x, y) = FX(x) · FY (y)

for all real numbers x, y.

In other words we may say that X and Y are independent, if

P (X < x, Y < y) = P (X < x) · P (Y < y)

for all real numbers x, y. Now we reformulate this de�nition for the discrete and
for the continuous case.

Let X and Y be discrete random variables with joint distribution

P (X = xi, Y = yk) = pik i = 1, 2, . . . k = 1, 2, . . .

Consider the marginal distributions of X and Y :

P (X = xi) = pi i = 1, 2, . . . P (Y = yk) = qk k = 1, 2, . . .

Theorem 20.11 X and Y are independent if and only if

pik = pi · qk

for all indices i and k.
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Our theorem states that the random variables are independent if and only if
their joint distribution can be expressed as the product of the marginal distri-
butions. For instance in Example 20.4 the variables are not independent, since
for the very �rst element

0.17 · 0.35 = p1 · q1 6= p11 = 0.1 ,

VERIFY!

Now let X and Y be continuously distributed random variables with joint
density function f . Denote by fX and fY the marginal densities of X and Y
respectively.

Theorem 20.12 X and Y are independent if and only if

f(x, y) = fX(x) · fY (y)

for every real x and y.

Proof. Easily follows from the equality F (x, y) = FX(x) · FY (y). �

Example 20.13 In Example 20.1 the random variables are not independent,
since

fX(x) · fY (y) 6= f(x, y) ,

i.e. the joint density cannot be expressed as the product of the marginal densi-
ties.

However, if the joint density of X and Y is given by

f(x, y) =

{
4xy if 0 < x < 1, 0 < y < 1
0 elsewhere

then X and Y are independent. Indeed

fX(x) =

∫ ∞
−∞

f(x, y) dy =

∫ 1

0

4xy dy =

{
2x if 0 < x < 1
0 elsewhere .

and by the symmetry of f the marginal density fY has the same form with
respect to y. Thus

f(x, y) = fX(x) · fY (y)

for all real numbers x and y.
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20.5 Conditional distributions

Consider the discrete random variables X és Y with joint distribution P (X =
xi, Y = yk) = pik, where i = 1, 2, . . . and k = 1, 2, . . ..

De�nition 20.14 Suppose that for a speci�c index k we have P (Y = yk) > 0.
Then by the conditional distribution of X under the condition Y = yk we mean
the distribution

P (X = xi|Y = yk) =
P (X = xi, Y = yk)

P (Y = yk)
, i = 1, 2, . . .

ATTENTION! Verify directly that we really have de�ned a distribution!

De�nition 20.15 By the conditional expected value of X under the condition
Y = yk we mean the sum

E(X|Y = yk) =
∑
i=1

xi · P (X = xi|Y = yk)

that may consist of �nitely many or in�nitely many terms depending on the
range of X (this is why we do not indicate the upper bound of the summation).

Example 20.16 Let us examine again the joint distribution in Example 20.4.
Then P (Y = 1) = 0.32, and the conditional expected value of X under the
condition Y = 1

E(X|Y = 1) = 0 · 0.04 + 1 · 0.2 + 2 · 0.08 + 3 · 0 = 0.36

Verify this calculation!

Recitation and Exercises

1. Reading: Textbook-2, Section 3.4

2. Homework: Textbook-2, Exercises 3.39, 3.40, 3.41, 3.42, 3.43, 3.45, 3.47,
3.49, 3.50, 3.51, 3.52 and 3.53

3. Review: Calculus, integration, improper integrals and in�nite series, and
"Probability Exercises"



Chapter 21

Covariance and correlation

21.1 Mean of a sum

Tétel 21.1 If the random variables X and Y both have a mean, then so does
X + Y and

E(X + Y ) = E(X) + E(Y )

Proof. We give an outline of the proof in the discrete case, the continuous
case is analogous.

E(X + Y ) =
∑
i

∑
k

(xi + yk)P (X = xi, Y = yk)

=
∑
i

xi
∑
k

pik +
∑
k

yk
∑
i

pik

=
∑
i

xiP (X = xi) +
∑
k

ykP (Y = yk) = E(X) + E(Y ) �

This theorem remains true for a sum with a �nite number of terms (use
induction!).

Example 21.2 Suppose that on n pieces of cards we wrote the integers
1, . . . , n, and then placed them in a hat. We choose m pieces of cards from the
hat at random, with replacement. Let X denote the sum of the integers. Find
E(X).

The distribution of X in that problem is hard to �nd. Give it a try!

Denote by X1, . . . , Xm the numbers selected. In view of the selection with
replacement, each Xk is identically distributed, namely:

P (Xk = i) =
1

n
i = 1, . . . , n
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This means that for every k

E(Xk) =

n∑
i=1

i · 1

n
=
n(n+ 1)

2
· 1

n
=
n+ 1

2
.

On the other hand, clearly X = X1 + . . .+Xm, and therefore

E(X) = E(X1) + . . .+ E(Xm) = m · n+ 1

2

Thus E(X) can be found without even knowing the distribution of X!

21.2 Mean of a product

If the discrete random variables X and Y , then

E(XY ) =
∑
i

∑
k

xiyk · pik

where the range of X is {x1, x2, . . .}, and the range of Y is {y1, y2, . . .} respec-
tively, and pik denotes their joint distribution.

In a conpletely similar way, if X and Y continuously distributed, both have
a mean, and their joint density function is f , then

E(XY ) =

∫ ∞
−∞

∫ ∞
−∞

xy · f(x, y) dx dy

Theorem 21.3 If X and Y are independent, then

E(XY ) = E(X) · E(Y )

Proof. We just focus on the continuous case, the discrete case can be treated
similarly.

E(XY ) =

∫ ∞
−∞

∫ ∞
−∞

xy · f(x, y) dx dy =

∫ ∞
−∞

∫ ∞
−∞

xy · fX(x) · fY (y) dx dy

=

∫ ∞
−∞

xfX(x) dx ·
∫ ∞
−∞

yfY (y) dy = E(X) · E(Y )

since the independence implies that the joint density is the product of the
marginal densities, i.e. f(x, y) = fX(x) · fY (y). �
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21.3 Variance of a sum

Theorem 21.4 Assume that X and Y are independent, and they both have a
variance. Then

V ar(X + Y ) = V ar(X) + V ar(Y )

The statement can be extended to any �nite number of terms.

Proof. Exploit our theorem about the mean of the product, then we get:

V ar(X + Y ) = E((X + Y − E(X + Y ))2)

= E((X − E(X))2) + E((Y − E(Y ))2)

+2E((X − E(X))(Y − E(Y )))

= V ar(X) + V ar(Y ) + 2(E(XY )− E(X)E(Y ))

= V ar(X) + V ar(Y ) . �

Example 21.5 Why do we think that by repeatedly performing an experiment
and taking the average of the results we can expect a more accurate result?

Let us suppose that for determining an unknown quantity m we perform n
observations, and the results are the random variables X1, . . . , Xn. We assume
that the variables are independent and identically distributed with

E(Xk) = m, D(Xk) = σ, k = 1, 2, . . . , n .

The assumption that all variables have the same distribution means that the
observations (measurments) are carried out in the same circumstances. Then σ
is interpreted as the expected error. Take the arithmetic average of our results,
i.e. introduce the random variable

Yn =
X1 + . . .+Xn

n

Then clearly E(Yn) = m, moreover, according to our theorem above

V ar(Yn) = V ar

(
1

n
(X1 + . . .+Xn)

)
=

1

n2
n · σ2 =

σ2

n
.

as a consequence of independence. Thus, for the standard deviation of Yn we
obtain:

D(Yn) =
σ√
n

for which D(Yn)→ 0 as n→∞. Hence, the expected error tends to zero, when
n approaches in�nity.
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21.4 Covariance and correlation

The following concepts are used for measuring the degree of dependence of
random variables.

De�nition 21.6 The covariance of random variables X and Y is de�ned by

Cov(X,Y ) = E((X − E(X)) · (Y − E(Y )))

and their correlation coe�cient is given by

Corr(X,Y ) =
Cov(X,Y )

D(X) ·D(Y )

As it is easy to see

Cov(X,Y ) = E(XY −E(X)Y −E(Y )X+E(X)E(Y )) = E(XY )−E(X)E(Y ) ,

and most of the time, this simpler expression is used to evaluate the covariance.

The covariance is NOT an absolute measurment of the in dependence, since
for any α 6= 0 we have

Cov(αX, Y ) = αCov(X,Y )

so it dependends on the dimensions . Just think of the case when X and Y are
costs given in Euro, but if we convert them to Forint, then their covariance will
change to approximately 3402 times higher. However, the correlation coe�cient
is independent of the dimension, since for any real numbers α 6= 0 and β we
have:

Corr(αX + β, αY + β) = Corr(X,Y )

which means that the correlation is independent of linear transformations. AT-
TENTION! Verify this equality directly by the de�nition!

Theorem 21.7

1. −1 ≤ Corr(X,Y ) ≤ 1

2. If X and Y are independent, then Cov(X,Y ) = 0

Proof. For proving the �rst statement, take a real number t ∈ R arbitrarily,
and consider the random variable

W = [X − E(X) + t(Y − E(Y ))]2
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Since W is nonnegative, so is its mean. This means that

E(W ) = E((X − E(X))2) + 2tCov(X,Y ) + t2E((Y − E(Y ))2) ≥ 0

for every real number t. This expression is quadratic with respect to t, and
therefore it can only nonnegative, if its discriminant is nonpositive, that is:

4Cov(X,Y )2 − 4E((X − E(X))2)E((Y − E(Y ))2) ≤ 0 .

Rearranging the terms, and taking the square root of both sides, we get:

|Cov(X,Y )| ≤ D(X)D(Y )

The second statement is an immediate consequence of Theorem 21.3. �

Example 21.8 ATTENTION! The example below shows that the converse
of the second statement of our theorem is not true! Toss a coin twice in a row,
and introduce the random variables:

Xk =

{
0 if toss k is a Head
1 if toss k is a Tail

(k = 1, 2). Consider the variables Y1 = X1 +X2 and Y2 = X1−X2. Then their
joint distribution is:

Y2 \ Y1 0 1 2
−1 0 0.25 0

0 0.25 0 0.25
1 0 0.25 0

By examining the joint distribution, we see that Y1 and Y2 are not independent,
but we can easily calculate that Cov(Y1, Y2) = 0

21.5 Theorem of Total Expectation

Consider the discrete random variables X and Y that have a joint distribution
P (X = xi, Y = yk) = pik, and P (Y = yk) > 0 for all indeces i = 1, 2, . . . and
k = 1, 2 . . ..

De�nition 21.9 Create the conditional expected values of X under the con-
ditions Y = yk that is:

mk = E(X|Y = yk) =
∑
i=1

xiP (X = xi|Y = yk)

for every k = 1, 2 . . .. This sequence is called the conditional expectation of X
with respect to the variable Y . Its notation is E(X|Y ).
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Observe that this way we have de�ned a random variable, namely

E(X|Y ) = mk , ha Y = yk , k = 1, 2, . . .

Below we determine the mean of this random variable. This result can be
regarded as the generalization of Theorem of Total Probability.

Tétel 21.10 (Theorem of Total Expectation) E(E(X|Y )) = E(X).

Proof. Indeed,

E(E(X|Y )) =
∑
k=1

mkP (Y = yk) =
∑
k=1

∑
i=1

xiP (X = xi|Y = yk)P (Y = yk)

=
∑
i=1

xi
∑
k=1

P (X = xi, Y = yk) =
∑
i=1

xiP (X = xi) = E(X)

since, in the second line, we obtain precisely the marginal distribution of X. �

ATTENTION! Why can we interchange the sums in the second line?

Example 21.11 In some situations it is easier to �nd E(X) by our theorem
than by the direct approach. The number of calls received by a call center on
a given day has Poisson distribution with a parameter λ > 0. Every call is a
wrong number with a given probability p > 0, independently from each other.
Find the expected value of the wrong number calls on that day.

Let X denote the number of wrong calls, and Y the total number of calls.
It is clear that for any �xed n ∈ N under the condition Y = n we face the
Bernoulli-experiment. Therefore,

P (X = k|Y = n) =

(
n

k

)
pk(1− p)n−k if n ≥ k

while P (X = k|Y = n) = 0, if n < k. Hence, the conditional expected value is
given by

mn = E(X|Y = n) = np , n = 1, 2, . . .

Making use of the Theorem of Total Expectation, we obtain

E(X) = E(E(X|Y )) =

∞∑
n=1

np
λn

n!
e−λ = λp

ATTENTION! Find E(X) directly by using the distribution of X as well!

Recitation and Exercises

1. Reading: Textbook-2, Sections 4.1, 4.2 and 4.3.

2. Homework: Textbook-2, Exercises 4.23, 4.24, 4.52, 4.59, 4.60, 4.64, 4.70,
4.98.

3. Review: "Probability Exercises"
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Sums of random variables

22.1 Sums of discrete variables

Assume that X and Y are independent variables, and both have Poisson-
distribution, with parameters λ > 0 and µ > 0 respectively. Find the dis-
tribution of X + Y . Then for any �xed integer k

P (X + Y = k) =

k∑
i=0

P (X = i, Y = k − i) =

k∑
i=0

P (X = i) · P (Y = k − i)

=

k∑
i=0

λi

i!
e−λ · µk−i

(k − i)!
e−µ =

e−(λ+µ)

k!

k∑
i=0

(
k

i

)
λiµk−i

=
(λ+ µ)k

k!
e−(λ+µ)

by the independence. Thus, X+Y has Poisson-distribution with the parameter
λ+ µ.

Using induction, this result can be extended to any �nite number of terms.

Tétel 22.1 Assume that X1, . . . , Xn are independent variables, and have
Poisson-distribution with parameters λ1, . . . , λn respectively. Then the random
variable

Yn = X1 + . . .+Xn

has Poisson-distribution with parameter λ1 + . . .+ λn.

22.2 Sums of continuous variables

Let X and Y be independent, continuously distributed random variables with
density functions f and g respectively. Denote by F and G their cumulative

143
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distribution functions. Let H denote the cumulative distribution function of
X + Y . To �nd H pick a real number x ∈ R. Then (sketch a picture!):

H(x) =

∫ ∫
t+s<x

f(s)g(t) ds ds =

∫ ∞
−∞

∫ x−s

−∞
f(s)g(t) dt ds

=

∫ ∞
−∞

f(s)

(∫ x−s

−∞
g(t) dt

)
ds =

∫ ∞
−∞

f(s)G(x− s) ds .

By taking the derivative of H, we get the density function h of X + Y

h(x) =

∫ ∞
−∞

f(s)g(x− s) ds

This formula is called the convolution integral of f and g.

ATTENTION! Di�erentiating the integral is not straightforward! Examine
this rule in some simple cases!

Example 22.2 Suppose now that X and Y are independent random variables
that are uniformly distributed on the interval [0, 1]. Then (X,Y ) is uniformly
distributed on the unit square of the plane. By sketching a picture, show that
if h stands for the density function of X + Y , then

h(x) =

 x if 0 < x < 1
2− x ha 1 < x < 2
0 elsewhere.

Example 22.3 Let X and Y be independent, exponentially distributed ran-
dom variables, both with parameter λ > 0. Let h denote the density function
of X+Y . If f denotes the density function of the exponential distribution with
parameter λ, then the convolution integral is:

h(x) =

∫ ∞
−∞

f(s)f(x− s) ds

Behind the integral sign f is zero on the negative part of the real line. Therefore,
the integrand is not zero if and only if s > 0 and x − s > 0, that is 0 < s < x.
Thus,

h(x) =

∫ x

0

λ2e−λse−λ(x−s) ds = λ2
∫ x

0

e−λx ds = λ2xe−λx

for any given x > 0, since the last integrand does not depend on s.

By using induction, we can extend the above result to any �nite number of
terms.

Theorem 22.4 Assume that X1, . . . , Xn are independent, exponentially dis-
tributed random variables with the same parameter λ > 0. Let hn denote the
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density function of the random variable

Yn = X1 + . . .+Xn

Then

hn(x) =
λn

(n− 1)!
xn−1e−λx

if x > 0, and hn(x) = 0, if x ≤ 0.

22.3 The Poisson process

In this section we describe a deeper relationship between the exponential and
the Poisson distributions.

Consider the random variables T1, T2, . . . which mean waiting times between
consecutive "occurances".

We can think of times between successive vehicles on a highway, times be-
tween incoming claims received by an insurance company, waiting times between
consecutive clients at a customer service desk, time intervals between incoming
calls to a call center, etc.

Assume that T1, T2, . . . independent, exponentially distributed random vari-
ables with identical parameter λ > 0. The smaller the value of λ, the longer are
the expected waiting times (check the expectation!). The memoryless property
of the exponential distribution means that the waiting time is independent on
how long we have been waiting before.

Set S0 = 0 denote by
Sn = T1 + . . .+ Tn

the total waiting time until the n-th occurance. For a given t > 0 the event

{Sn ≤ t}

means that the n-th occurance arrives before t. This means that the number of
occurances in the time interval [0, t] is at least n.

Denote by N(t) the number of occurances in the time interval [0, t], then the
events

{N(t) ≥ n} = {Sn ≤ t}

coincide. For every t > 0 we de�ned a random variableN(t), this correspondence
is called the Poisson process.

How can we �nd the distribution of N(t) for a �xed t > 0? The event that
there are exactly n occurances in the time interval [0, t] is given by

{N(t) = n} = {Sn ≤ t} ∩ {Sn+1 ≤ t} = {Sn ≤ t < Sn+1} .
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Clearly {Sn+1 ≤ t} ⊂ {Sn ≤ t}, and this implies

P (N(t) = n) = P (Sn ≤ t)− P (Sn+1 ≤ t) .

Let hn be the density of Sn, and hn+1 be the density of Sn+1. Since T1, T2, . . .
are independent, exponentially distributed random variables with the same pa-
rameter λ, then in view of Theorem 22.4 of the previous section we get

hn(x) =
λn

(n− 1)!
xn−1e−λx and hn+1(x) =

λn+1

n!
xne−λx

for every x > 0. Therefore

P (N(t) = n) = P (Sn ≤ t)− P (Sn+1 ≤ t) =

∫ t

0

hn(x) dx−
∫ t

0

hn+1(x) dx .

Evaluate the �rst integral on the righ-hand side by integration by parts:∫ t

0

hn(x) dx =
λn

(n− 1)!

∫ t

0

xn−1e−λx dx

=
λn

(n− 1)!

[
xn

n
e−λx

]t
0

+
λn

(n− 1)!

∫ t

0

xn

n
λe−λx dx

=
(λt)n

n!
e−λt +

λn+1

n!

∫ t

0

xne−λx dx .

We can recognize that in the last integral we pecisely have hn+1. Hence,

P (N(t) = n) =
(λt)n

n!
e−λt

Theorem 22.5 In the Poisson process the number of occurances in the time

interval [0, t] is a Poisson random variable with parameter λt.

22.4 Sum of standard normal distributions

Let Z1 and Z2 be independent, standard normally distributed random variables,
and �nd the distribution of their sum:

Y = Z1 + Z2

Now, the convolution integral is

h(x) =

∫ ∞
−∞

ϕ(s)ϕ(x− s) ds
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where h is the density function of Y . Then

h(x) =
1

2π

∫ ∞
−∞

e−s
2/2e−(x−s)

2/2 ds =
1

2π
e−

x2

2

∫ ∞
−∞

exs−s
2

ds

=
1

2π
e−

x2

2

∫ ∞
−∞

e−(s−x/2)
2

ex
2/4 ds =

1

2π
e−

x2

4

∫ ∞
−∞

e−(s−x/2)
2

ds

The last integral is precisely the Gauss integral, whose value is
√
π, thus

h(x) =
1

2
√
π
e−

x2

4 −∞ < x <∞

This is exactly the density function of the normal distribution with parameters
m = 0 and σ =

√
2.

Using completely analogous arguments, we can formulate the following re-
sult.

Theorem 22.6 Let Z1, . . . , Zn be independent, standard normally distributed
random variables. Then Y = Z1 + . . . + Zn is a normally distributed random
variable with parameters m = 0 and σ =

√
n.

22.5 Central Limit Theorem

Imagine the following experiment. To determine an unknown quantity m we
carry out n independent observations (measurments). To approximate the un-
known quantity we use the arithmetic mean (average) of the n outcomes.

Let us denote the outcomes by X1, . . . , Xn and assume that they are inde-
pendent and identically distributed random variables with

E(Xk) = m, D(Xk) = σ, k = 1, 2, . . . , n

(Identical distribution means that the observations are performed in identical
circumstances.) For the stantardized average let us introduce the following
notation:

Yn =
1
n (X1 + . . .+Xn)−m

σ/
√
n

Then Yn has a mean of 0 and standard deviation 1.

It was the amazing discovery of the Russian mathematician Alexandr Lya-
punov and the mathematics of his time (early 20-th century) that the distribu-
tion of this variable Yn converges to the standard normal distribution.

Tétel 22.7 (Central Limit Theorem) Under the above conditions let Fn
denote the cumulative distribution function of Yn. Then for every x ∈ R we
have

lim
n→∞

Fn(x) = Φ(x) .
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Example 22.8 On a given day the number of visitors to a local convenience
store is 100. Every visitor buys something with probability p = 0.2 (indepen-
dently from each other). Find the probability that on that given day the the
number of purchases will be between 15 and 25.

Let X be the number of purchases. Then X is binomially distributed
(Bernoulli-experiment!) with parameters n = 100 and p = 0.2. For each visitor
introduce the following notation:

Xk =

{
0 if does not buy anything
1 if buys something

then X = X1 + . . .+X100 and the terms are independent random variables. It
is easy to see that for each k we have E(Xk) = 0.2 and V ar(Xk) = 0.16, hence
D(Xk) = 0.4. Therefore,

P (15 < X < 25) = P

(
−5

4
<
X − 20

4
<

5

4

)
= P

(
−5

4
<

1
100 (X1 + . . .+X100)− 0.2

0.4/10
<

5

4

)
Making use of the Central Limit Theorem

P (15 < X < 25) ≈ Φ(1.25)− Φ(−1.25)

= 2Φ(1.25)− 1 = 0.7888

by looking up the number in the table for the standard normal distribution, see
Textbook-2, page 736 (Appendix A).

Recitation and Exercises

1. Reading: Textbook-2, Sections 6.5 and 6.6.

2. Homework: Textbook-2, Exercises 6.24, 6.26, 6.29, 6.34 and 6.38.

3. Review: "Probability Exercises"
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Law of Large Numbers

23.1 Chebyshev's Theorem

So far we have had to determine probabilities of the form

P (a < X < b)

This is easy to do if the distribution of the random variable X is known. In
particular, in the case of a discrete variable we get

P (a < X < b) =
∑

a<xk<b

P (X = xk)

while for a continuously distributed variable

P (a < X < b) =

∫ b

a

f(x) dx

where f is the density function of X. However, there are situations when this
procedure cannot be completed. Namely, if

1. either the distribution of X is not known,

2. or the distribution of X is known, but too complicated to use.

In cases like these, we can be satis�ed with an appropriate estimate on the
given probability. This estimate is provided by Chebyshev's Theorem. Consider
a random variable X that has a mean and a variance.

Theorem 23.1 (Chebyshev's Theorem) The mean of X is E(X) = m and
its standard deviation is D(X) = σ. Then

P (|X −m| < k · σ) ≥ 1− 1

k2

149
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for any k > 0.

Proof. We present the proof for a continuously distributed random variable.
In the discrete case the proof can be carried out in a completely analogous way.
Let f be the density function of X, then

σ2 =

∫ ∞
−∞

(x−m)2f(x) dx

If k > 0 is given, then the value of the integral on the right-hand side will not
increase if we skip the interval [m− kσ,m+ kσ]. In fact:

σ2 ≥
∫ m−kσ

−∞
(x−m)2f(x) dx+

∫ ∞
m+kσ

(x−m)2f(x) dx (23.1)

since the integrand is nonnegative. On the other hand, at every point x of the
interval (−∞,m− kσ] we have (x−m)2 ≥ k2σ2, and hence∫ m−kσ

−∞
(x−m)2f(x) dx ≥

∫ m−kσ

−∞
k2σ2f(x) dx ≥ k2σ2P (X ≤ m− kσ) .

Completely similarly, at every point x of the interval [m + kσ,∞) we get (x −
m)2 ≥ k2σ2, and consequently∫ ∞

m+kσ

(x−m)2f(x) dx ≥
∫ ∞
m+kσ

k2σ2f(x) dx ≥ k2σ2P (X ≥ m+ kσ) .

If we combine the latter two inequalities with the inequality (23.1), then we
obtain

σ2 ≥ k2σ2P (X ≤ m− kσ) + k2σ2P (X ≥ m+ kσ) .

Dividing both sides with the positive expression k2σ2 we get

1

k2
≥ P (X ≤ m− kσ) + P (X ≥ m+ kσ) = P (|X −m| ≥ kσ) .

By converting to the complement event, the proof is completed. �

Note that the theorem gives an irrelevant result if k ≤ 1, so we apply the
inequality only for k > 1.

Example 23.2 For instance, if the distribution of the random variable X is
not known, but its mean E(X) = 8 and its standard deviation D(X) = 2 are
given, then

P (2 < X < 14) ≥ 1− 1

9
≈ 0.8889

since in this case k = 3.
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23.2 Chebyshev's Theorem in equivalent form

Sometimes it is more covenient to use Csebishev's Theorem in the following
form:

P (|X − E(X)| < ε) ≥ 1− V ar(X)

ε2

where ε > 0. Indeed, this inequality is equivalent to our theorem by setting
k ·D(X) = ε > 0, and then

1

k2
=
V ar(X)

ε2

Let us formulate the theorem in the following equivalent form.

Theorem 23.3 Consider a random variable X with a mean E(X) = m, and
standard deviation D(X) = σ. Then for every �xed ε > 0 we have

P (|X −m| < ε) ≥ 1− σ2

ε2
(23.2)

Example 23.4 On a given day a call center receives 2000 incoming calls.
Every call is a wrong number with probability 0.002 (independently from each
other). Find the probability that on that given day there are at most 8 wrong
number calls.

Let X denote the number of wrong number calls. Clearly X is binomially
distributed (Bernoulli experiment!), with parameters n = 2000 and p = 0.002.
The solution to our problem is:

P (X ≤ 8) =

8∑
k=0

(
2000

k

)
0.002k · 0.9982000−k

which is not easy to evaluate (although the distribution is known).

However, we can give a reasonable estimate by using Chebyshev's Theorem.
Now m = 4 and σ2 = 4 · 0.998 ≈ 4, and therefore

P (X ≤ 8) = P (|X − 4| < 5) ≥ 1− 4

25
= 0.84
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23.3 Poisson approximation

Example 23.5 In a large hospital with 2000 beds, the probability that a
patient needs intensive care is 0.002 on any given day (independently from each
other). The director wants to establish a new emergency ward so that if a
patient needs intensive care, must get a bed with probability of at least 0.99.
What should be the size of the emergency ward with minimal cost (smallest
number of beds)?

Let N denote the number of beds in the emergency ward, and X be the
number of patients who need intensive care on a given day. Then X is clearly
binomially distributed (Bernoulli experiment!) with a mean of m = 4 and
variance σ2 = 4 · 0.998 ≈ 4. Then the inequality

P (X ≤ N) =

N∑
k=0

(
2000

k

)
0.002k0.9982000−k ≥ 0.99

has to be solved for the smallest N (which means the lowest cost).

This is the situation when the distribution of X is known, but too compli-
cated to use. Apply Chebyshev's Theorem instead:

P (|X − 4| < ε) ≥ 1− 4

ε2
= 0.99

The lowest solution is ε = 20 and therefore N = 23 is obtained for the optimal
smallest number of beds in the new emergency ward.

Chebyshev's Theorem is true for any distribution, so we cannot expect a
very sharp estimate. We can get a much more accurate solution if we apply the
Poisson approximation. The theorem on how to approximate the binomial dis-
tribution by the Poisson distribution is discussed in Section 18.5. In particular,
in the present example:

N∑
k=0

(
2000

k

)
0.002k0.9982000−k ≈

N∑
k=0

4k

k!
e−4

since "n = 2000 is large enough, and p = 0.002 su�ciently small", moreover
np = 4. When we look at the Poisson tables (see Textbook-2, page 732, Ap-
pendix A) we can see that the sum on the right-hand side exceeds 0.99 at
N = 9. Based on this approximation we claim that even an emergency ward
of size N = 9 ful�lls the criteria. (Examining how sharp this approximation is,
goes beyond the scope of this book.)

23.4 Law of Large Numbers

We carry out an experiment n times in a row (independently from each other)
and each time we observe whether or not a given event A occurs (Bernoulli
experiment).
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Suppose that the probability of the event A is P (A) = p (where 0 ≤ p ≤ 1)
and let Xn be the number of experiments in which A occurs. The quotient
Xn/n means the relative frequency of the event A.

We want to examine whether the relative frequency converges to the real
value of the probability when the number of experiments is increased that is
n→∞?

From theoretical point of view, this question is of fundamental importance.
If the answer is a�rmative, it justi�es our axiomatic approach to probability.
Indeed, within the framework of our theory that we have developed from the
axioms, we are able to derive a theorem that can directly be veri�ed in reality.
In other words, our axioms are set properly, and their consequences re�ect real
phenomena.

As is well known, Xn is binomially distributed with parameters n and p
paraméterekkel. Pick a number ε > 0 and apply Chebyshev's Theorem:

P

(∣∣∣∣Xn

n
− p
∣∣∣∣ ≥ ε) = P (|Xn − np| ≥ nε)

Since E(Xn) = np and V ar(Xn) = np(1− p), we get

P (|Xn − np| ≥ nε) ≤
np(1− p)
n2ε2

We have p(1− p) ≤ 1/4 for any real number p, so from here

P

(∣∣∣∣Xn

n
− p
∣∣∣∣ ≥ ε) ≤ 1

4nε2
→ 0

if n→∞. We formulate this result in the theorem below.

Theorem 23.6 (Bernoulli's Law of Large Numbers)

lim
n→∞

P

(∣∣∣∣Xn

n
− p
∣∣∣∣ < ε

)
= 1

for every ε > 0.

This theorem is sometimes called "Bernoulli's Weak Law of Large Numbers"
to distinguish it from more advanced and complicated "Strong Law" results.

Example 23.7 A consulting agency makes a forecast of the support of a
political party before the upcoming parliamentary election. They interview
potential voters about their preferences. The agency wants to be 90% sure that
their prediction should be within the 1% margin (i.e. the di�erence between the
predicted ratio and real ratio is less than 1%). How many people have to be
interviewed?
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Let 0 < p < 1 denote the unknown real ratio (the real support of the party),
this will be estimated by the relative frequency. Assume that the size of sample
(number of interviews) is n (yet to be determined) and Xn is the number of
voters who support the party. Then the anticipated support ratio is Xn/n.

This is a Bernoulli experiment, therefore Xn is binomially distributed with
E(Xn) = np and V ar(Xn) = np(1− p). Then the following inequality holds:

P

(∣∣∣∣Xn

n
− p
∣∣∣∣ ≤ 0.01

)
≥ 1− 1

4n · 10−4

If the agency wants to guarantee this accuracy with at least 90% certainty, then

1− 1

4n · 10−4
= 0.90

from which we have n = 25 000.

In reality, using advanced statistical methods, even a smaller sample might
be su�cient. However, in most situations it is hard to guarantee that the set
of interviewed voters is homogeneous and representative (in the sense that the
sample ratio re�ects the ratio for the whole voting society).

Under the conditions of Theorem 23.6 the following stronger statement can
also be proven.

Theorem 23.8 Under the conditions of Theorem 23.6 we have

P

(
lim
n→∞

Xn

n
= p

)
= 1

Intuitively, Theorem 23.6 claims that very likely the relative frequency gets
close to the probability p as n increases. However, it does not exclude that large
di�erences can occur beyond any arbitrarily large index n. It just says that such
large di�erences are unlikely. Theorem 23.8 tells us however, that such large
di�erences come with probability zero. (The proof is due to Lyapunov and to
Kolmogorov in a more general form in the 30's of the last century.)

Recitation and Exercises

1. Reading: Textbook-2, Section 4.4.

2. Homework: Textbook-2, Exercises 4.75, 4.76, 4.77, 4.78 and 4.91.

3. Review: "Probability Exercises"
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