$$A = \begin{bmatrix} 1 & -1 & 1 \\ -3 & 2 & -1 \\ -2 & 1 & \alpha \end{bmatrix} \qquad b = \begin{bmatrix} 0 \\ \beta \\ -1 \end{bmatrix}$$

Find the parameters α and β so that the inhomogeneous linear system $A \cdot x = b$ has infinetely many solutions.

Hint. $\alpha = 0$ and $\beta = -1$

Problem 2

Find the rank of the above matrix A as a function of the parameter α .

Hint. rank A = 3, if $\alpha \neq 0$ and rank A = 2, if $\alpha = 0$

Problem 3

Find the diagonal form D of the symmetric matrix A below. Also determine the orthogonal matrix U so that $U^T A U = D$.

$$A = \left[\begin{array}{rrrr} 3 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 5 \end{array} \right]$$

Hint.

$$D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 6 \end{bmatrix} \qquad U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2/\sqrt{5} & 1/\sqrt{5} \\ 0 & -1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}$$

Problem 4

Find the tangent plane to the graph of the function f below at the point P(2, 1, 4).

$$f(x,y) = 2y^2\sqrt{x^2 + y^2 + 4} - 2$$

Hint.

 $f'_1(2,1) = 4/3$ $f'_2(2,1) = 38/3$ The equation of the tangent plane is: 4(x-2) + 38(y-1) - 3(z-4) = 0.

Problem 5

Specify the critical points of the function f, where:

$$f(x, y, z) = \frac{1}{x} + \frac{1}{y} + \frac{xy}{8} - 2z^2$$

Hint. The only critical point is: P(2,2,0), which is the single solution to

$$f_1'(x, y, z) = -\frac{1}{x^2} + \frac{y}{8} = 0$$

$$f_2'(x, y, z) = -\frac{1}{y^2} + \frac{x}{8} = 0$$

$$f_1'(x, y, z) = -4z = 0$$

Find the Hesse-matrix at all critical points above. Classify them, if we have a minimum, maximum or saddle point.

Hint.

$$H = \left[\begin{array}{rrr} 1/4 & 1/8 & 0 \\ 1/8 & 1/4 & 0 \\ 0 & 0 & -4 \end{array} \right]$$

The eigenvalues of the Hessian are $\lambda_1 = 1/8$, $\lambda_2 = 3/8$ and $\lambda_3 = -4$. Consequently, *H* is indefinite, and the critical point is a *saddle point*.

Problem 7

Indicate whether the statement is TRUE or FALSE: F T F F

- If the linear system $A \cdot x = b$ admits a solution then the columns of A are linearly independent.
- For every square matrix det A) \cdot det A^T) ≥ 0 .
- If the vectors a_1, a_2, a_3 are linearly independent, and we set $b_1 = a_1 + a_2$, $b_2 = a_1 + a_2 + a_3$ and $b_3 = a_2 + a_3$, then the vectors b_1, b_2, b_3 are linearly independent as well.
- If x_0 is a strict local minimum point of the twice continuously differentiable function f, then the Hesse-matrix is positive definite at x_0 .

Problem 8

$$A = \begin{bmatrix} 1 & -1 & 1 \\ -3 & 2 & -1 \\ -2 & 1 & \alpha \end{bmatrix} \qquad b = \begin{bmatrix} 0 \\ \beta \\ -1 \end{bmatrix}$$

Find all parameters α and β so that the linear system of equations $A \cdot x = b$ has a unique solution.

Hint. $\alpha \neq 0$ and β is any real number.

Problem 9

Consider the matrix A in the previous problem.

- (a) Find all values of α so that det $A \neq 0$.
- (b) Find rank A and deg A as a function of the parameter α .

Hint. (a) $\alpha \neq 0$. (b) If $\alpha \neq 0$, then rank A = 3 and deg A = 0. If $\alpha = 0$, then rank A = 2 and deg A = 1.

Problem 10

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 1 & 3 \\ -1 & 1 & \alpha \end{bmatrix} \qquad b = \begin{bmatrix} 1 \\ 2 \\ \beta \end{bmatrix}$$

Find all parameters α and β so that the linear system $A \cdot x = b$ has at least one solution.

Hint. $\alpha = 0$ and $\beta = -1$.

Problem 11

Find the diagonal form D of the symmetric matrix A, and determine the orthogonal matrix U for which $U^T A U = D$.

$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

Hint.

$$D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 6 \end{bmatrix} \qquad U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2/\sqrt{5} & 1/\sqrt{5} \\ 0 & -1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}$$

Problem 12

Let us assume that the pairs of vectors a+b and 2a-2b, moreover b and 6a+3b are orthogonal respectively. Find the angle of the vectors a and b, if none of them is zero vector.

Problem 13

The slope of the tangent line to the graph of $e^{-xy} + 2x + 3xy = 3$ at the point (p, 0) is -1. What can we say about the value of the parameter p?

Problem 14

Evaluate the gradient vector of f at the point (0, 1, 0), if

$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2} \ln(ye^x)$$

Problem 15

Find the equation of the tangent plane to the graph of $f(x,y) = (4x^2 - 2y^3)\sqrt{x^2 + y^2 + 2}$ at the point (1,1,4).

Problem 16

Consider the square matrix $A = [a_1, a_2, a_3]$. Find det A in terms of the determinant of the square matrix

$$B = [a_2 + a_3, a_1 + a_3, a_1 + a_2]$$

Problem 17

Locate all critical points of the function below:

$$f(x, y, z) = x^{2} + \frac{1}{x^{2}} + y^{2} + \frac{1}{y^{2}} + e^{z^{2}}$$

Hint.

$$f_1'(x, y, z) = -\frac{1}{x^2} + \frac{y}{8} = 0$$

$$f_2'(x, y, z) = -\frac{1}{y^2} + \frac{x}{8} = 0$$

$$f_1'(x, y, z) = -4z = 0$$

There is a single critical point: P(2, 2, 0).

18. Feladat

Find the Hesse-matrix of the function in the previous problem at every critical point, and decide which is a minimum, maximum or saddle point.

Hint.

$$H = \left[\begin{array}{rrr} 1/4 & 1/8 & 0\\ 1/8 & 1/4 & 0\\ 0 & 0 & -4 \end{array} \right]$$

Set f(x, y) = x - 3y. Find the solution to the conditional extremum problem

$$f(x, y) \to \max(\min)$$
$$x^2 + y^2 = 9$$

Problem 20

Find the diagonal form D of the symmetric matrix A, and specify the orthogonal matrix U such that $U^T A U = D$.

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 5 \end{bmatrix}$$

Hint.

$$D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 6 \end{bmatrix} \qquad U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2/\sqrt{5} & 1/\sqrt{5} \\ 0 & -1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}$$

Problem 21

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 2 & 1 & \alpha \end{bmatrix} \qquad b = \begin{bmatrix} 6 \\ 4 \\ \beta \end{bmatrix}$$

Find all parameters α and β so that the linear system $A \cdot x = b$ has a unique solution.

Hint. $\alpha = 0$ and $\beta = -1$

Problem 22

Find the diagonal form D of the symmetric matrix A, and determine the orthogonal matrix U such that $U^T A U = D$.

$$A = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 0 & 2 \\ 2 & 2 & 0 \end{bmatrix}$$

Hint.

$$D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 6 \end{bmatrix} \qquad U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2/\sqrt{5} & 1/\sqrt{5} \\ 0 & -1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}$$

Problem 23

Locate all critical points of the function:

$$f(x, y, z) = (2x^2 + y^2)e^{-z}$$

Hint. There is a single critical point: P(2,2,0), which is the only solution to the system

$$f_1'(x, y, z) = -\frac{1}{x^2} + \frac{y}{8} = 0$$

$$f_2'(x, y, z) = -\frac{1}{y^2} + \frac{x}{8} = 0$$

$$f_1'(x, y, z) = -4z = 0$$

Find the Hesse-matrix of the function in the previous problem at every critical point, and decide whether it is a minimum, maximum or saddle point.

Hint.

$$H = \left[\begin{array}{rrr} 1/4 & 1/8 & 0 \\ 1/8 & 1/4 & 0 \\ 0 & 0 & -4 \end{array} \right]$$

Problem 25

$$A = \left[\begin{array}{rrr} -1 & 0 & -1 \\ 1 & 2 & \alpha \\ 1 & 1 & 2 \end{array} \right] \qquad b = \left[\begin{array}{r} 0 \\ 1 \\ \beta \end{array} \right]$$

Find all parameters α and β so that the linear system $A \cdot x = b$ has at least one solution.

Hint. $\alpha = 0$ and $\beta = -1$.

Problem 26

Find the diagonal form D of the symmetric matrix A and also find the othogonal matrix U for which $U^T A U = D$.

$$A = \begin{bmatrix} 1 & -3 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Hint.

$$D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 6 \end{bmatrix} \qquad U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2/\sqrt{5} & 1/\sqrt{5} \\ 0 & -1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}$$

Problem 27

Find all critical points of the function:

$$f(x, y, z) = x \cdot e^x + \sqrt{1 + y^2 + z^2}$$

Hint.

$$f_1'(x, y, z) = -\frac{1}{x^2} + \frac{y}{8} = 0$$

$$f_2'(x, y, z) = -\frac{1}{y^2} + \frac{x}{8} = 0$$

$$f_1'(x, y, z) = -4z = 0$$

-1

The unique critical point is: P(2,2,0)

Problem 28

Find the Hesse-matrix of the function in the previous problem at every critical point, and decide whether it is a minimum, maximum or saddle point.

Hint.

$$H = \left[\begin{array}{rrr} 1/4 & 1/8 & 0\\ 1/8 & 1/4 & 0\\ 0 & 0 & -4 \end{array} \right]$$

Examine if the vectors below are linearly in dependent, and find the value of

$$\dim \lim \{a_1, a_2, a_3, a_4\}$$

where

$$a_{1} = \begin{bmatrix} 1\\ 2\\ -1\\ 2 \end{bmatrix} \quad a_{2} = \begin{bmatrix} 2\\ -1\\ 3\\ 1 \end{bmatrix} \quad a_{3} = \begin{bmatrix} -1\\ 8\\ -9\\ 4 \end{bmatrix} \quad a_{4} = \begin{bmatrix} 5\\ -5\\ 10\\ 1 \end{bmatrix}$$

Problem 30

Consider the following vectors:

$$a_1 = \begin{bmatrix} 1\\ -2\\ 1 \end{bmatrix} \quad a_2 = \begin{bmatrix} 2\\ 0\\ 3 \end{bmatrix} \quad a_3 = \begin{bmatrix} 1\\ 6\\ 3 \end{bmatrix} \quad b = \begin{bmatrix} 0\\ -4\\ -1 \end{bmatrix}$$

and find out if the relation $b \in lin\{a_1, a_2, a_3\}$ is true.

Problem 31

$$A = \begin{bmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & 1 & 3 \\ 1 & 1 & 2 & \alpha \end{bmatrix} \qquad b = \begin{bmatrix} 1 \\ 2 \\ \beta \end{bmatrix}$$

Find all values of the parameters α and β so that the inhomogeneous linear system Ax=b

(a) has infinitely many solutions,

- (b) has no solution,
- (c) has a unique solution.

Problem 32

Consider the linear transformation:

$$A = \left[\begin{array}{rrr} 3 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 4 \end{array} \right]$$

and find the rank of A, and determine the product of all eigenvalues.