
Calculus Problems and Exercises

Problem 1

Find out if the sequence below is monotone, bounded, and �nd its limit:

an =
2n− 1

2n+ 3

Hint. Rewrite the sequence in the following form:

an =
2n+ 3− 4

2n+ 3
= 1− 4

2n+ 3
.

Then obviously the sequence is monotone increasing, its upper bound is 1 (and this is the lowest possible),
further the limit is 1:

lim
n→∞

an = 1

Problem 2

Determine the limit of the following sequence:

an =
5n2 − 3n+ 6

3n2 + 9n− 4

Hint. Factor out the highest degree of n (i.e. n2) both from the numerator and the denominator, then
we get

an =
n2

n2
· 5− 3/n+ 6/n2

3 + 9/n− 4/n2

Then the �rst factor is 1, while in the second factor the limit of the numerator is 5, and the limit of the
denominator is 3. Therefore

lim
n→∞

an =
5

3

Problem 3

Consider now a sequence with parameters, and calculate the limit:

an =
αkn

k + αk−1n
k−1 + . . .+ α0

βmnm + βm−1nm−1 + . . .+ β0

where the coe�cients αk and βm are not zero.

Hint. Following the argument of the previous problem, factor out the highest degree of n in the numerator
and in the denominator. Then we obtain

an =
nk

nm
· αk + αk−1/n+ . . .+ α0/n

k

βm + βm−1/n+ . . .+ β0/nm

Observe that the limit of the second factor is αk/βm, since all the non-constant terms converge to zero.

We can come up with the following statement:

lim
n→∞

an =


0 if k < m
αk

βm
if k = m

+∞ if k > m and αk/βm > 0
−∞ if k > m and αk/βm < 0



Problem 4

Find the limit of the sequence below:

an =
−5n3 + 3n2 − 8n+ 6

3n2 − 12n+ 21

Hint. Based on the result in the previous problem, here we have k > m, and in addition the quotient of
the coe�cients in the highest degree terms is negative, thus:

lim
n→∞

an = −∞

Problem 5

Examine whether the following sequence is monotone, bounded and �nd its limit:

an =
√
n2 + 2− n

Hint. Each term tends to in�nity, so carry out the following transformation::

an = (
√
n2 + 2− n) ·

√
n2 + 2 + n√
n2 + 2 + n

=
n2 + 2− n2√
n2 + 2 + n

=
2√

n2 + 2 + n
<

2

2n
=

1

n

In view of the Squeezing Theorem, this sequence converges to zero. It is easy to see that the sequence is
monotone decreasing, and its lower bound is zero (highest possible lower bound).

Problem 6

Create a sequence in the following recursive way: a1 =
√
2, a2 =

√
2 +
√
2, and so forth

an =

√
2 +

√
2 + . . .

√
2

where in the formula for an there are n pieces of radicals. This is how an is created from an−1 for
n = 2, 3, . . .:

an =
√

2 + an−1

Find out if the sequence is monotone, bounded, and if so, �nd the limit!

Hint. It is easy to see that the sequence is strictly monotone increasing, since at every step we insert a
new radical.

By using Mathematical Induction, we show that the sequence is bounded from above, and 2 is an upper
bound. Indeed, in the �rst step a1 < 2. Now if for any n we have an−1 < 2, then for the n-th element
we have

a2n = 2 + an−1 < 4

which implies that an < 2 for every index n.

It follows that the sequence is convergent, and let us denote by A the unknown (but positive) limit, i.e.
an → A. by the rule of creating the sequence we deduce for every n ≥ 2

a2n = 2 + an−1

where a2n → A2, and 2 + an−1 → 2 +A. Since the sides are equal for every n, we get

A2 = 2 +A

The only positive solution of this quadratic equation is A = 2, therefore

lim
n→∞

an = 2



ATTENTION!

In the �rst two steps of the solution, proving the monotonicity and the boudedness of the sequence are
profoundly important! Without showing this, the sequence is not necessarily convergent. For example, if
we consider the sequence in which a1 = 1, and

an = 2an−1

then by jumping to the equation for the unknown A (and skipping the �rst two steps) we have

A = 2A

whose only solution is A = 0, and that would mean that the limit is zero. However, this sequence is not
bounded, its explicit form is

an = 2n−1

and this is clearly not convergent, it tends to in�nity.

Problem 7

Find the limit of the following sequence:

an =

(
2n+ 1

2n+ 3

)n+1

Hint. Inside the parentheses, divide both the numerator and the denominator of the fraction by 2n:

an =

(
1 + 1/2

n

1 + 3/2
n

)n+1

=

(
1 + 1/2

n

)n
(
1 + 3/2

n

)n · 1 + 1/2
n

1 + 3/2
n

In the �rst factor, the limit of the numerator is e1/2, while the limit of the denominator is e3/2. The limit
of the second factor is obviously 1, consequently

lim
n→∞

an =
e1/2

e3/2
=

1

e

Problem 8

Determine the limit of the sequence below:

an =

(
1− 1

n

)n2

Hint. we can rewrite the sequence in this form:

an =

[(
1− 1

n

)n]n
The limit of the sequence inside the brackets is 1/e ≈ 0.367891..., and that means that starting from
some index N we have

0.3 <

(
1− 1

n

)n
< 0.4

for each n ≥ N . By taking the n-th power of both sides

0.3n <

[(
1− 1

n

)n]n
< 0.4n

As we see, both the lower estimate and the upper estimate tend to zero. Therefore, by the Squeezing
Theorem we conclude

lim
n→∞

an = 0



Problem 9

Find the limit of the sequence an = n
√
n.

Hint. Attention! This sequence is not monotone, verify it by direct calculation!

As a matter of fact, every element is geater than 1, so it is legal to write them this way:

an = n
√
n = 1 + hn

where hn > 0 for every n. Raise both sides to the power of n:

n = (1 + hn)
n > 1 +

(
n

2

)
h2n = 1 +

n(n− 1)

2
h2n

where on the right-hand side we kept only the �rst and third terms from the Binomial Expansion, and
discarded all other positive terms. Regrouping the inequality we obtain

0 < h2n <
2

n

By making use of the Squeezing Theorem, we conclude that h2n → 0, and hence hn → 0. Thus

lim
n→∞

an = 1

ATTENTION!

Please make sure that keeping only the �rst and second terms from the Binomial Expansion is not
su�cient, we de�nitely need the quadratic term as well.

Problem 10

Compute the limit of the sequence below:

an =
4n+1 − 2 · 6n + 5 · 3n

3 · 6n − 7 · 5n+1 + 2n

Hint. Factor out the power with the highest base (i.e. 6n) from the numerator and the denominator.
What we get is:

an =
4 · (4/6)n − 2 + 5 · (3/6)n

3− 35 · (5/6)n + (2/6)n

Here the limit of the numerator os −2, since all the other terms tend to zero. Analogously, the limit of
the denominator is 3, because the other two non-constant terms converge to zero. Thus:

lim
n→∞

an = −2

3

Problem 11

Find the sum of the in�nite series below:

S =

∞∑
k=1

2k+2

3k

Hint. If we factor out 4 from the sum, then get the terms of a geometric series with ratio 2/3. The sum
of that series is:

∞∑
k=0

(
2

3

)k
=

1

1− 2/3
= 3

Be careful, in our problem the summation starts from k = 1 and the term that belongs to k = 0 is
missing. Thus:

S =

∞∑
k=1

2k+2

3k
= 4(3− 1) = 8



Problem 12

Examine the convergence of the following series:

∞∑
k=1

1

k2 + 2k

Hint. Divide the expression behind the sum sign into the di�erence of two fractions:

1

k2 + 2k
=

1

2

(
1

k
− 1

k + 2

)
Then the n-th partial sum can be written like:

Sn =

n∑
k=1

1

k2 + 2k
=

1

2
·
[(

1− 1

3

)
+

(
1

2
− 1

4

)
+

(
1

3
− 1

5

)
+ . . .+

(
1

n
− 1

n+ 2

)]
Observe that the negative and positive terms (in every second parenthesis) cancel each other. Only the
�rst two positive and the last two negative terms stay alive:

Sn =

n∑
k=1

1

k2 + 2k
=

1

2

(
1 +

1

2
− 1

n+ 1
− 1

n+ 2

)
This sequence is obviously convergent and its limit is 3/4. It follows that the series is convergent, and its
sum is

S =

∞∑
k=1

1

k2 + 2k
=

3

4

Problem 13

Find the sum of the following series:
∞∑
k=2

1

k3 − k

Hint. As in the previous problem, we would like to express the term behind the sum sign as the di�erence
of fractions, but this is not so simple in this case. We do this:

1

k3 − k
=

A

k − 1
+
B

k
+

C

k + 1

where A, B and C are unknown constants. Find the common denominator on the right-hand side:

1

k3 − k
=
A(k2 + k) +B(k2 − 1) + C(k2 − k)

k3 − k
=

(A+B + C)k2 + (A− C)k −B
k3 − k

Since the sides are identically equal, we get the system of equations:

A+B + C = 0

A− C = 0

−B = 1

The solutions are A = C = 1/2 and B = −1. So, the n-th partial sum is:

Sn =

n∑
k=2

1

k3 − k
=

1

2
·
n∑
k=2

(
1

k − 1
− 2

k
+

1

k + 1

)
=

1

2
·
[(

1− 1 +
1

3

)
+

(
1

2
− 2

3
+

1

4

)
+

(
1

3
− 2

4
+

1

5

)
+ . . .+

(
1

n− 1
− 2

n
+

1

n+ 1

)]
As we can see, every negative term is cancelled by the last positive term of the preceding parentheses
and the �rst positive term of the succeeding parentheses. The terms that remain are:

Sn =
1

2
·
(
1− 1 +

1

2
+

1

n
− 2

n
+

1

n+ 1

)
This shows us that this sequence is convergent, and its limit is 1/4, hence

∞∑
k=2

1

k3 − k
=

1

4



Problem 14

Is the series below convergent?
∞∑
k=1

k + 2

k2 + k + 2

Hint. It is easy to verify that
k + 2

k2 + k + 2
>

1

k + 1

for each k ∈ N. The fractions on the right-hand side are the terms of the Harmonic series, with the
exclusion of the very �rst term. The Harmonic series is divergent, so, based on our su�cient condition,
our example is divergent as well.

ATTENTION!

It is worth noting that in the case of series of this type, if the magnitude of the fraction is k−1, then
the series is divergent, if however, the magnitude is k−α, where α > 1, then the series is convergent.
Summing up, it is vitally important how fast the k-th term converges to zero. We revisit these questions
in Chapter 9.

Problem 15

As we have seen in the lecture,

S =

∞∑
k=1

1

k2

is convergent, and for the sum we have S < 2. To prove this for every k ≥ 2 we applied the upper
estimate

1

k2
<

1

k2 − k
Could we perhaps �nd a better estimate for the unknown sum?

Hint. Use the following more accurate estimate for the terms: k ≥ 2

1

k2
<

1

k2 − 1

for every k ≥ 2. This is how we divide the right-hand side into the di�erence of two fractions:

1

k2 − 1
=

1

2
·
(

1

k − 1
− 1

k + 1

)
Then, for the n-th partial sum we obtain:

Sn =
1

2
·
[(

1− 1

3

)
+

(
1

2
− 1

4

)
+

(
1

3
− 1

5

)
+ . . .+

(
1

n− 1
− 1

n+ 1

)]
Each negative term will be cancelled by the positive term in the second parentheses. What remains is:

Sn =
1

2
·
(
1 +

1

2
− 1

n
− 1

n+ 1

)
which is convergent, and its limit is 3/4. Therefore, the n-th partial sum of the series in the problem:

n∑
k=1

1

k2
< 1 +

n∑
k=2

1

k2 − 1
< 1 +

3

4
=

7

4

for every n ∈ N. Consequently

S =

∞∑
k=1

1

k2
<

7

4

Remark: the exact value of the sum is S = π2/6 (but this is hard to prove!).



Problem 16

Decide whether or not the following series is convergent:

∞∑
k=1

k3

2k

Hint. Use the Quotient-test:

ak+1

ak
=

(k + 1)3

2k+1
· 2

k

k3
=

(
k + 1

k

)3

· 1
2

If k →∞ then the �rst cubic term converges to 1, thus:

lim
k→∞

ak+1

ak
=

1

2
< 1

We conclude that the series is convergent (but we do not know what the sum is).

Problem 17

An arbitrary real number x 6= 0 is given, and examine the convergence of the series:

∞∑
k=0

xk

k!

Hint. Exploit again the Quotient-test (keep in mind that x can be negative, so use absolute values):∣∣∣∣ak+1

ak

∣∣∣∣ = |x|k+1

(k + 1)!
· k!
|x|k

=
|x|
k + 1

If k → ∞ then the expression on the right-hand side tends to zero, which is less than 1. Therefore, the
series is absolutely convergent for each real number x, and henceforth convergent as well.

Problem 18

Find out if the series below is convergent:

∞∑
k=1

(
k − 1

k + 3

)2

Hint. Try to use the Quotient-test again:

ak+1

ak
=

(
k

k + 4

)2

·
(
k + 3

k − 1

)2

=

(
k2 + 3k

k2 + 3k − 4

)2

The last fraction converges to 1 if k →∞. Indeed, the quotient of the coe�cients of the quadratic terms
is 1. The Quotient-test gives us 1 as a limit, so, based purely on this, nothing can be said about the
convergencs.

However, if we take a look at the terms of the series, we can see that

lim
k→∞

ak = lim
k→∞

(
k − 1

k + 3

)2

= 1

which means that ak does not converge to zero. The necessary condition is not satis�ed, so the series is
divergent.

Problem 19

Examine the convergence of the series:
∞∑
k=1

(
k − 1

2k + 3

)k
Hint. Observe that for the base of the power we have:

0 ≤ k − 1

2k + 3
<

1

2



By taking the k-th power of both sides we get:

0 ≤
(
k − 1

2k + 3

)k
<

(
1

2

)k
for all k ∈ N. On the right-hand side of the inequality we have the terms of the geometric series with
ratio 1/2, which is convergent, and its sum is

∞∑
k=1

(
1

2

)k
=

1

1− 1/2
− 1 = 1

Here in the sum formula for geometric series we need to subtract 1, because the term k = 0 is missing.
Making use of the su�cient condition we deduce that the series is convergent, and for the sum we have:

∞∑
k=1

(
k − 1

2k + 3

)k
< 1

ATTENTION!

As a practice, solve the problem by applying the Quotient-test! We will come up with the same answer.
Indeed:

ak+1

ak
=

(
k

2k + 5

)k+1

·
(
2k + 3

k − 1

)k
=

(
2k + 3

2k + 5

)k
·
(

k

k − 1

)k
· k

2k + 5

If k →∞ then the �rst factor tends to e−1, the second to e, and the third to 1/2. Therefore the limit is
less than 1, and this implies that the series is convergent.

ATTENTION!

The advantage of the �rst solution is that it provides an estimate for the sum, while the second does not!

Problem 20

Is the series below convergent?
∞∑
k=1

(
k − 1

k + 1

)k
Hint. Try again using the Quotient-test:

ak+1

ak
=

(
k

k + 2

)k+1

·
(
k + 1

k − 1

)k
=

(
k + 1

k + 2

)k
·
(

k

k − 1

)k
· k

k + 2

If k →∞, then the �rst factor converges to e−1, the second to e, and the third to 1. Hence, the limit is
1, and this way we cannot say anything about the convergence.

Examine however the terms of the series:

lim
k→∞

ak = lim
k→∞

(
k − 1

k + 1

)k
=

1

e2

that is ak does not converge to zero. The necessary condition is violated, so this series is divergent.

Problem 21

Find the following limit:

lim
x→+∞

−3x3 + 2x2 + 15x− 6

2x3 − 7x2 + 18x− 8

Hint. Factor out the highest degree of x from both the numerator and the denominator:

lim
x→+∞

x3

x3
· −3 + 2/x+ 15/x2 − 6/x3

2− 7/x+ 18/x2 − 8/x3

The �rst factor is 1, while in the second factor every term tends to zero, except the constant terms.
Hence, the limit of the fraction is −3/2. Therefore:

lim
x→+∞

−3x3 + 2x2 + 15x− 6

2x3 − 7x2 + 18x− 8
= −3

2



Problem 22

The following problem is given with parameters. Find the limit:

lim
x→+∞

αkx
k + αk−1x

k−1 + . . .+ α0

βmxm + βm−1xm−1 + . . .+ β0

Hint. Just like in the preceding problem, factor out the highest degree from the numerator and the
denominator:

lim
x→+∞

xk

xm
· αk + αk−1/x+ . . .+ α0/x

k

βm + βm−1/x+ . . .+ β0/xm

The limit of the second fraction is αk/βm, because both in the numerator and the denominator every
non-constant term tends to zero. Thus:

lim
x→+∞

αkx
k + αk−1x

k−1 + . . .+ α0

βmxm + βm−1xm−1 + . . .+ β0
=


0 if k < m
αk

βm
if k = m

+∞ if k > m and αk

βm
> 0

−∞ if k > m and αk

βm
< 0

Problem 23

In a completely analogous way, establish a formula for the limit below:

lim
x→−∞

αkx
k + αk−1x

k−1 + . . .+ α0

βmxm + βm−1xm−1 + . . .+ β0

Hint. Follow the steps of the solution in the previous problem, then we get:

lim
x→−∞

xk−m · αk + αk−1/x+ . . .+ α0/x
k

βm + βm−1/x+ . . .+ β0/xm

Keep in mind that an even power of x tends to +∞ in −∞, while an odd power of x tends to −∞ in
−∞. Based on this observation, we have:

lim
x→−∞

αkx
k + αk−1x

k−1 + . . .+ α0

βmxm + βm−1xm−1 + . . .+ β0
=



0 if k < m
αk

βm
if k = m

+∞ if k > m and k −m even, and αk

βm
> 0

−∞ ha k > m és k −m even, and αk

βm
< 0

−∞ if k > m and k −m odd, and αk

βm
> 0

+∞ if k > m and k −m odd, and αk

βm
< 0

Problem 24

Based on our previous result, �nd the limit below, just by "taking a close look":

lim
x→−∞

4x5 − 6x4 + x3 − 13x2 + 28x− 5

−21x2 + 14x− 22

Hint. In this problem k − m = 5 − 2 = 3 > 0 is odd, further the quotient of the main coe�cients is
−4/21, which is negative, so apply the formula from the previous problem:

lim
x→−∞

4x5 − 6x4 + x3 − 13x2 + 28x− 5

−21x2 + 14x− 22
= +∞

Problem 25

Determine the following limit:

lim
x→0

sin 2x

3x

Hint. Rewrite the expression in this form:

sin 2x

3x
=

sin 2x

2x
· 2
3



where x 6= 0. Then we immediately see:

lim
x→0

sin 2x

3x
=

2

3

With di�erent numbers the solution can be carried out in an analogous way.

Problem 26

Examine if the following limit exists:

lim
x→0

√
1− cos2 x

x

Hint. If we take the square root, we obtain:
√
1− cos2 x

x
=
| sinx|
x

=

{
sin x
x if x > 0
− sin x

x if x < 0

since sinx is an odd function. Then the right-hand side limit is 1, while the left-hand side limit is −1.
Then the two one-sided limits do not coincide, therefore, the limit does not exist.

Problem 27

Consider the function

f(x) =
x+ 1

x− 2

and determine the one-sided limits at x = 2.

Hint. Take a sequence xn → 2, xn < 2 arbitrariliy. In that case the denominator is negative and tends
to zero, while the numerator is positive and tends to 3. Thus, the left-hand limit is −∞. We can argue
very similarly to demonstrate that the right-hand limit is +∞. Summing up:

lim
x→2−

x+ 1

x− 2
= −∞ and lim

x→2+

x+ 1

x− 2
= +∞

Problem 28

Investigate the limit:

lim
x→+∞

(
1 +

1

x

)x
If x > 0 is a given number, then choose an integer n so that n ≤ x < n+ 1. It can be shown that(

1 +
1

n

)n
≤
(
1 +

1

x

)x
<

(
1 +

1

n+ 1

)n+1

Based on the facts that we studied about sequences, and by using the Squeezing Theorem, we can state:

lim
x→+∞

(
1 +

1

x

)x
= e

Using a very similar argument we can show that

lim
x→−∞

(
1 +

1

x

)x
= e

Moreover, if α is an arbitrarily given real number, then

lim
x→±∞

(
1 +

α

x

)x
= eα

Making use of these observations �nd the following limit:

lim
x→+∞

(
3x+ 5

3x+ 2

)x
Hint. Just like in the case of sequences, carry out the following transformation:

(
3x+ 5

3x+ 2

)x
=

(
1 + 5/3

x

)x
(
1 + 2/3

x

)x



where we divided both the numerator and the denominator by 3x. By using the results above, we conclude
that the limit of the numerator is e5/3, and the limit of the denominator is e2/3. By taking the quotient
of the two limits, we receive:

lim
x→+∞

(
3x+ 5

3x+ 2

)x
=
e5/3

e2/3
= e

Problem 29

Find all parameters a and b so that the function f is continuous everywhere:

f(x) =


b sin x
2x if x < 0

b− a if x = 0
1−cos x
x2 + b if x > 0

Hint. It is immediately clear that f is continuous at all points x 6= 0. For the continuity at x = 0 we
need the existence of the limit at this point, and limit must coincide with f(0), the value of the function
at x = 0.

The function has one-sided limits at x = 0. In particular, the left-hand limit is:

lim
x→0−

f(x) = lim
x→0−

b sinx

2x
=
b

2

and the right-hand limit is:

lim
x→0+

f(x) = lim
x→0+

1− cosx

x2
+ b = b+

1

2

The limit exists if and only if the one-sided limits agree, that is:

b

2
= b+

1

2

where the only solution is b = −1. Then the limit of f at x = 0 is

lim
x→0−

f(x) = lim
x→0+

f(x) = lim
x→0

f(x) = −1

2

ATTENTION!

The existence of the limit at x = 0 has nothing to do with f(0). The function does not even need to be
de�ned at X = 0!

The function f is continuous at x = 0 if and only if its limit here is the same as its value, i.e.

f(0) = b− a = −1− a = lim
x→0

f(x) = −1

2

from where we get a = −1/2.

Problem 30

Find the following limit:

lim
x→∞

(
√
x2 + 2− x)

Hint. Both terms of the di�erence tend to in�nity, so carry out the following transformation:

(
√
x2 + 2− x) ·

√
x2 + 2 + x√
x2 + 2 + x

=
x2 + 2− x2√
x2 + 2 + x

=
2√

x2 + 2 + x
<

2

2x
=

1

x

By using the Squeezing Theorem, we immediately see that limit is zero:

lim
x→∞

(
√
x2 + 2− x) = 0

(This problem is completely analogous to a problem on sequences. Scroll up and check it!)

Problem 31

Find the derivative of the following function:

F (x) =
(
2x3 − 6x2 + 12x− 8

)8



Hint. Introduce the notations:

f(y) = y8 és g(x) = 2x3 − 6x2 + 12x− 8

then the function F can be given in the form F = f ◦ g. Hence, by the Chain-Rule:

F ′(x) = f ′(g(x)) · g′(x) = 8
(
2x3 − 6x2 + 12x− 8

)7 · (6x2 − 12x+ 12
)

Problem 32

Calculate the derivative of the function below:

F (x) =

(
2x2 − 5x+ 6

3x+ 7

)6

Hint. Now, if we use the following notations:

f(y) = y6 és g(x) =
2x2 − 5x+ 6

3x+ 7

then we can see that F = f ◦ g. Making use of the Chain-Rule and the Quotient-Rule we get:

F ′(x) = 6

(
2x2 − 5x+ 6

3x+ 7

)5

· (4x− 5)(3x+ 7)− (2x2 − 5x+ 6) · 3
(3x+ 7)2

This latter expression can further be simpli�ed.

Problem 33

Find the derivative of the following product:

F (x) = (3x− 7)8 · (5x+ 1)6

Hint. We di�erentiate the powers as we did in the previous exercises. Further, we exploit the Product-
Rule:

F ′(x) = 8(3x− 7)7 · 3 · (5x+ 1)6 + (3x− 7)8 · 6(5x+ 1)5 · 5

Problem 34

Determine the derivative of the function f(x) = sinx at an arbitrary point x ∈ R.

Hint. As we have seen in today's lecture, f is di�erentiable at x = 0 and f ′(0) = 1. Consider now the
di�erence quotient of f at an arbitrary point x:

f(x+ h)− f(x)
h

=
sin(x+ h)− sinx

h
=

sinx cosh+ cosx sinh− sinx

h

= sinx
cosh− 1

h
+ cosx

sinh

h

where we relied on the additive rule. In the �rst term of the second line

lim
h→0

cosh− 1

h
= lim
h→0

h
cosh− 1

h2
= 0 · (−1

2
) = 0

while in the second term

lim
h→0

sinh

h
= 1

Therefore, the limit of the di�erence quotient is

lim
h→0

f(x+ h)− f(x)
h

= 0 · sinx+ 1 · cosx

and that means f ′(x) = cosx.

Problem 35

Find the derivative function of f(x) = cosx.



Hint. In view of the identity f(x) = cosx = sin(x+ π/2), the Chain-Rule yields:

f ′(x) = cos(x+
π

2
) · 1 = − sinx

Problem 36

Calculate the derivative of the tangent function, f(x) = tanx.

Hint. As is well known,

f(x) = tanx =
sinx

cosx
where x 6= π

2
+ kπ, k ∈ Z

Apply the Quotient-Rule at all points of the domain:

f ′(x) =
cos2 x+ sin2 x

cos2 x
=

1

cos2 x

Problem 37

Consider the function
f(x) = (1 + sin2 x)(1 + cos2 x)

and �nd its derivative.

Hint. Apply the Product-Rule, and use the Chain-Rule for the quadratic trigonometric expressions. Then
we obtain

f ′(x) = 2 sinx cosx(1 + cos2 x)− (1 + sin2 x) · 2 · cosx sinx

By using the double angle formula, this expression can be given in a simpli�ed way:

f ′(x) = sin 2x · (cos2 x− sin2 x) = sin 2x · cos 2x =
1

2
sin 4x

ATTENTION!

When calculating derivatives of trigonometric functions we may get various results depending on the
ways we found the derivative. If our calculations are correct, then obviously all results are identical (but
sometimes this is not easy to recognize).

For instance, in the example above, �rst carry out the indicated multiplication, and then di�erentiate
the product. Verify, that this way you have the same result.

Problem 38

Examine if the following function is di�erentiable at the point x = 0:

f(x) = |x| · sinx

Hint. Write the di�erence quotient at x = 0:

f(0 + h)− f(0)
h

=
|h| · sinh

h
=

{
sinh if h > 0
− sinh if h < 0

It is easy to see that here the right-hand limit and the left-hand limit coincide, their common value is
0, and consequently, the di�erence quotient admits a limit at 0. Thus, the function is di�erentiable at
x = 0 and the derivative is f ′(0) = 0.

ATTENTION!

We cannot use the Product-Rule for proving the di�erentiability of f , because the �rst factor is not
di�erentiable at the point x = 0!

Problem 39

Find the unknown parameter a so that the tangent line to the graph of the function

f(x) = 2x+ ax3



taken at x = 1 passes through the point P (3, 20).

Hint. At x = 1 we have f(1) = 2 + a. On the other hand, the derivative of the function is

f ′(x) = 2 + 3ax2

and its value at x = 1 is f ′(1) = 2+ 3a, this is the slope of the tangent line. The equation of the tangent
line at x = 1 is given by

y = (2 + 3a)(x− 1) + 2 + a

The tangent line passes through the point P (3, 20) if and only if the coordinates of P ful�ll the equation
of the tangent line. By substituting the coordinates we get the simple linear equation:

20 = (2 + 3a)(3− 1) + 2 + a = 6 + 7a

where the only solution is a = 2.

Problem 40

Consider the cubic function:

f(x) =
x3

6
− 5x2

4
+

3x

2
+

1

12

Find the point on the graph of the function, where the tangent line is perpendicular to the line with
equation y = 2x+ 9.

Hint. Let us denote the unknown point on the graph by P (a, f(a)). The slope of the tangent line at this
point is

f ′(a) =
a2

2
− 5a

2
+

3

2

The necessary and su�cient condition for perpendicularity of two straight lines is that their slopes are
negative reciprocals of each other. That gives us

a2

2
− 5a

2
+

3

2
= −1

2

In a simpli�ed for we get the quadratic equation

a2 − 5a+ 4 = 0

that possesses two solutions: a1 = 1 and a2 = 4. This tells us that we found two points with the given
property: P1(1, 1/2), and P2(4,−41/12).

Problem 41

Find the derivative of the function below:

F (x) = ln
√

1 + x2

Hint. Verify that the function is de�ned on the whole real line (and it is nonnegative). Observe that F
is the composition of three functions: the 1 + x2, the square root, and the logarithm, in this order. By
applying the Chain-Rule:

F ′(x) =
1√

1 + x2
· 1

2
√
1 + x2

· 2x =
x

1 + x2

We could have gotten the derivative easier, by using this identity:

F (x) = ln
√

1 + x2 =
1

2
ln(1 + x2)

Please verify that this way we get the same result.

Problem 42

Calculate the derivative of the following function:

F (x) = (x2 + 3x)e2x−x
2



Hint. Use the product rule of di�erentiation, and keep in mind that we need the Chain-Rule when �nding
the derivative of the secod factor:

F ′(x) = (2x+ 3)e2x−x
2

+ (x2 + 3x)(2− 2x)e2x−x
2

= (−2x3 − 4x2 + 8x+ 3)e2x−x
2

Problem 43

How can we �nd the derivative of this function:

F (x) = xx x > 0

Hint. Make sure that neither the rule for power functions, nor the rule for exponential functions can
directly be applied. Therefore, we use this trick:

F (x) = xx =
(
eln x

)x
= ex ln x x > 0

In this form the Chain-Rule can be applied:

F ′(x) = ex ln x · (lnx+ 1) = xx(lnx+ 1)

where we used the product rule when di�erentiating the exponent. We will follow the same method when
we compute the derivatives of power function, where both the base and the exponent are functions of x.

Problem 44

Following the idea of the previous problem, �nd the derivative of this function:

F (x) = x
√
x x > 0

Hint. Just like in the preceding exercise, rewrite the function in this form:

F (x) =
(
eln x

)1/x
= e

1
x ln x x > 0

Then carrying out a similar calculation, we get:

F ′(x) = e
1
x ln x ·

(
1

x2
− lnx

x2

)
= x
√
x · 1

x2
· (1− lnx)

Problem 45

Examine if the function
f(x) = xe−|x|

is di�erentiable at x = 0.

Hint. Take the di�erence quotient at x = 0:

f(h)− f(0)
h

=

{
e−h ha h > 0
eh ha h < 0

The one-sided limits of this expression exist, and both the right-hand and left-hand limits are 1. Therefore,
the function is di�erentiable at 0, and f ′(0) = 1.

Based on this observation, the function is di�erentiable everywhere, and its derivative is

f ′(x) =

{
(1− x)e−x ha x ≥ 0
(1 + x)ex ha x < 0

ATTENTION! This very last formula can only be posted, if we verifyed the di�erentiability at x = 0! We
cannot use the Chain-Rule for proving the di�erentiability of f , because the exponent is not di�erentiable
at the point x = 0!

Problem 46

The function f(x) = sinx is not one-to-one, and hence, it does not have an inverse. However, if we
restrict the domain to the interval [−π/2, π/2], then the function becomes one-to-one (and its range is



the interval [−1, 1]), and hence, it posseses an inverse. This inverse function is called the "arc sine"
function, and its notation is

f−1(y) = arcsin y

ATTENTION! Sketch the graph of the inverse!

Let y be an interior point of the interval [−1, 1], and �nd the derivative of the inverse function at y. Take
the point x ∈ [−π/2, π/2] for which y = sinx. Since y was an interior point, therefore, x is going to be
an interior point of the interval [−π/2, π/2]. For such interior points we have f ′(x) = cosx 6= 0. Thus,
we can use the di�erentiability theorem for the inverse function:(

f−1
)′
(y) =

1

f ′(x)
=

1

cosx
=

1√
1− sin2 x

=
1√

1− y2

because in the entire open interval (−π/2, π/2) we have cosx > 0. Thus, we obtain(
f−1

)′
(y) =

1√
1− y2

where −1 < y < 1.

Problem 47

The function f(x) = cosx is not one-to-one, and hence, it does not have an inverse. However, if we
restrict the domain to the interval [0, π], then the function becomes one-to-one (and its range is the
interval [−1, 1]), and hence, it posseses an inverse. This inverse function is called the "arc cosine"
function, and its notation is

f−1(y) = arccos y

ATTENTION! Sketch the graph of the inverse!

Let y be an interior point of the interval [−1, 1], and �nd the derivative of the inverse function at y. Take
the point x ∈ [0, π] for which y = cosx. Since y was an interior point, therefore, x is going to be an
interior point of the interval [0, π]. For such interior points we have f ′(x) = − sinx 6= 0. Thus, we can
use the di�erentiability theorem for the inverse function:(

f−1
)′
(y) =

1

f ′(x)
= − 1

sinx
= − 1√

1− cos2 x
= − 1√

1− y2

because in the entire open interval (0, π) we have sinx > 0. Thus, we obtain(
f−1

)′
(y) = − 1√

1− y2

where −1 < y < 1.

ATTENTION! It is interesting to notice that the derivatives of the functions arcsinx and arccosx are
the negatives of each other, so the derivative of their sum is zero.

This is not surprising in view of the fact that for every x we have

cosx = sin(
π

2
− x)

This means that if for a given point y ∈ (−1, 1) the point x ∈ (0, π) ful�lls

y = cosx = sin(
π

2
− x)

then for the inverse functions we obtain

x = arccos y moreover
π

2
− x = arcsin y

Adding up the two equalities we get

arccos y + arcsin y =
π

2

This tells us that the sum of the two functions is constant. Consequently, its derivative is zero.



Problem 48

Now we consider the tangent function f(x) = tanx. This one is not invertible either, for it is not one-
to-one. However, if the domain is restricted to the open interval (−π/2, π/2), then we get a one-to-one
function (whose range is the entire real line (−∞,∞)). The inverse of this function is called the "arc
tangent", and its notation is:

f−1(y) = arctan y

whose domain is the whole real line (−∞,∞).

ATTENTION! Please sketch the graph!

Recall that the derivative of the tangent function is:

f ′(x) =
1

cos2 x
6= 0

on the open interval (−π/2, π/2), so we can apply the inverse di�erentiability theorem:(
f−1

)′
(y) =

1

f ′(x)
= cos2 x =

1

1 + tan2 x
=

1

1 + y2

for every point y ∈ (−∞,∞).

Problem 49

Find the following limit:

lim
x→0

√
4 + x2 − 2

1− cosx

Hint. At x = 0 the fraction is of the form 0/0, so use the L'Hôpital-Rule:

lim
x→0

√
4 + x2 − 2

1− cosx
= lim
x→0

x/
√
4 + x2

sinx

which is still of the form 0/0. Apply the L'Hôpital-Rule again:

lim
x→0

x/
√
4 + x2

sinx
= lim
x→0

√
4+x2−x2/

√
4+x2

4+x2

cosx

In this expression the limit of the numerator is 1/2, while the limit of the denominator is 1, hence

lim
x→0

√
4 + x2 − 2

1− cosx
=

1

2

Problem 50

By making use of the L'Hôpital-Rule, determine the limit below:

lim
x→0+

x lnx

Hint. Rewrite the expression as a quotient and then use the L'Hôpital-Rule:

lim
x→0+

x lnx = lim
x→0+

lnx

1/x
= lim
x→0+

1/x

−1/x2
= lim
x→0+

(−x) = 0

Problem 51

Find the following limit:
lim
x→∞

x2e−x

Hint. First express the function in the form of a quotient, and then apply the L'Hôpital-Rule twice in a
row:

lim
x→∞

x2e−x = lim
x→∞

x2

ex
= lim
x→∞

2x

ex
= lim
x→∞

2

ex
= 0

We can see from the procedure that the result remains true if the quadratic factor of x is replaced by any
higher power of x. Indeed, by taking the derivative of the numerator su�ciently many times the power
of x will disappear, while the denominator remains ex in each step. Thus, for any integer n we have:

lim
x→∞

xne−x = 0



Informally, this phenomenon can be interpreted by saying that ex "tends faster to in�nity" than any
power of x.

Problem 52

How should we interpret the power 00? On the one hand, we may say it should be zero, because any
power of zero is zero. But on the other hand, way may also say that it should be 1, because the "zero
power of any number is 1". Which one is more reasonable?

We believe that we make the right decision if our choice makes the function

f(x) = xx

continuous from the right at x = 0, that is there should not be a "gap" on the graph. (It cannot be
continuous from the left, because the function is not even de�ned on the negative part of the real line.)

Find the right-hand limit of f at x = 0:

lim
x→0+

xx = lim
x→0+

ex ln x = 1

since the limit of the exponent is 0 (we refer to an earlier problem).

ATTENTION! Here we relied on the continuity of ex at 0, which is well known, since it is even di�eren-
tiable at that point.

Therefore, the reasonable choice is 1.

Problem 53

Consider the function:
f(x) = x2 − x− 1 + (x2 − 5x+ 6) lnx

Does there exist a point a ∈ [2, 3] so that f ′(a) = 4?

Hint. Let us try to �nd a solution to the equation

f ′(x) = 2x− 1 + (2x− 5) lnx+
1

x
(x2 − 5x+ 6) = 4

in the interval [2, 3], which is obviously impossible. This equation cannot be solved with algebraic
manipulations.

However, if we realize that f(2) = 1 and f(3) = 5, then by Lagrange's Mean Value Theorem we can �nd
a point a ∈ [2, 3] for which

f(3)− f(2)
3− 2

= 4 = f ′(a)

Thus, the equation has a solution in the interval [2, 3].

ATTENTION!

Second solution. We could have argued the following way. Examine the derivative function at the
endpoints of the interval. Then we �nd

f ′(2) = 3− ln 2 < 4 moreover f ′(3) = 5 + ln 3 > 4

Since the derivative function is continuous, by Bolzano's Theorem there exists a point a ∈ [2, 3], so that
f ′(a) = 4.

Problem 54

Find the monotone segments of the function

f(x) = x2e−x

and �nd the extreme points (if they exist).

Hint. Calculate the derivative:

f ′(x) = 2xe−x − x2e−x = (2x− x2)e−x

Obviously, we have two critical points: x1 = 0 and x2 = 2. By examining the sign of the we come to the
following conclusion:



• if −∞ < x < 0, then f ′(x) < 0, hence f is strictly monotone decreasing,

• if 0 < x < 2, then f ′(x) > 0, hence f is strictly monotone increasing,

• if 2 < x < +∞, then f ′(x) < 0, hence f is strictly monotone decreasing.

As we see, the derivative changes the sign at both critical points, therefore:

• f has a (global) minimum at x1 = 0,

• f has a local maximum at x2 = 2.

It is easy to see that the maximum point x2 = 2 is not global. In fact, the function is not bounded from
above, since

lim
x→−∞

x2e−x = +∞

Incidentally, by the L'Hôpital-Rule we also have:

lim
x→+∞

x2e−x = 0

(compare with an earlier exercise).

Problem 55

Find the convex and concave segments of the function above, and �nd the points of in�ection.

Hint. The second derivative of the function is given by:

f ′′(x) = (2− 2x)e−x − (2x− x2)e−x = (x2 − 4x+ 2)e−x

The zeros of the second derivative are:

x1 = 2−
√
2 and x2 = 2 +

√
2

By examining the sign of the second derivative we come to the conclusion:

• if −∞ < x < 2−
√
2, then f ′′(x) > 0, and f is convex,

• if 2−
√
2 < x < 2 +

√
2, then f ′′(x) < 0, and f is concave,

• if 2 +
√
2 < x < +∞, then f ′′(x) > 0, and f is convex.

Therefore f ′′ changes the sign both at x1, and x2, and that means that both are in�ection points of f .

ATTENTION! See the �le Figures.pdf for the graph of the function!

Problem 56

The following function is de�ned with an unknown parameter a.

f(x) = 2ax+ lnx x > 0

Determine the value of the parameter a so that the function has a local maximum at x = 1/2.

Hint. The derivative of the function is

f ′(x) = 2a+
1

x

The derivative is zero at the local maximum point, so at x = 1/2 we necessarily have

2a+ 2 = 0

and this means a = −1. We have not �nished yet, because we need to verify that the point x = 1/2 is
really a maximum point. Take the second derivative:

f ′′(x) = − 1

x2

and this is negative everywhere, therefore the critical point is really a maximum point and a = −1 is the
only solution to the problem.



Problem 57

Find the monotone segments of the following function:

f(x) =
x

1 + x3
x 6= −1

Find the extreme points as well (if any).

Hint. The derivative function is:

f ′(x) =
1 + x3 − 3x3

(1 + x3)2
=

1− 2x3

(1 + x3)2

As the denominator is positive, the sign of the derivative depends on the sign of the numerator. The
summary is the following:

• if −∞ < x < −1, then f ′(x) > 0, and f is strictly monotone increasing,

• if −1 < x < 1/ 3
√
2, then f ′(x) > 0, and f is strictly monotone increasing,

• if 1/ 3
√
2 < x <∞, then f ′(x) < 0, and f is strictly monotone decreasing.

Since the derivative changes the sign at the critical point x = 1/ 3
√
2, the function possesses a local

maximum at that point.

ATTENTION! At x = 1/ 3
√
2 the maximum is local, but not global! Indeed, at the point x = −1 is not

de�ned, but its one-sided limits are:

lim
x→−1−

x

1 + x3
= +∞ and lim

x→−1+

x

1 + x3
= −∞

and consequently, the function is neither bounded from above, nor from below.

ATTENTION! Although the function f is strictly monotone increasing both on (−∞,−1) and on
(−1, 1/ 3

√
2), that does not mean that f would be strictly monotone increasing on the interval −∞, 1/ 3

√
2).

In fact, the point x = −1 is not in the domain! See the remark above about the one-sided limits here!

Problem 58

Find the convex and concave segments, and the points of in�ection of the function above.

Hint. Determine the second derivative for all x 6= −1:

f ′′(x) =
−6x2(1 + x3)2 − (1− 2x3) · 2(1 + x3) · 3x2

(1 + x3)4
=

6x2(x3 − 2)

(1 + x3)3

The second derivative has two roots: x1 = 0 and x2 = 3
√
2. The signs are:

• if −∞ < x < −1, then f ′′(x) > 0, and f is convex,

• if −1 < x < 0, then f ′′(x) < 0, and f is concave,

• if 0 < x < 3
√
2, then f ′′(x) < 0, and f is concave,

• if 3
√
2 < x < +∞, then f ′′(x) > 0, and f is convex.

As we can notice, at the point x1 = 0 the second derivative does not change the sign, and hence, this is
not a point of in�ection. At the point x2 = 3

√
2 however, f ′′ changes the sign, so this a point of in�ection.

ATTENTION!

Can we say that the function is concave on the whole interval −1 < x < 3
√
2? See the comment to the

previous problem, where the answer to a similar question was NO.

The answer here is YES, since the function is continuous on the whole interval, and in addition at every
interior point we have f ′′(x) ≤ 0.

See the graph of this function in the �le Figures.pdf!



Problem 59

The function below is given with an unspeci�ed parameter a.

f(x) = 2ax+ lnx x > 0

Find the value of the parameter a such that the function is monotone decreasing on the open interval
(0, 1)!

Hint. The derivative of the function is:

f ′(x) = 2a+
1

x

We are looking for a parameter a so that f is monotone decreasing on the open interval (0, 1), which
means

f ′(x) = 2a+
1

x
≤ 0

for each 0 < x < 1. If x is su�ciently close to the point 0, then the derivative can take arbitrarily large
positive values, therefore, the derivative will be certainly positive regardless of the value of the parameter
a. Thus, such a parameter does not exist.

Problem 60

Analyze the function

f(x) = xe−x
2

and �nd the extreme points.

Hint. The derivative of the function is:

f ′(x) = e−x
2

− 2x2e−x
2

= (1− 2x2)e−x
2

As we can see, the function has two critical points:

x1 = − 1√
2

and x2 =
1√
2

By examining the sign of the derivative, we obtain:

• if −∞ < x < −1/
√
2, then f ′(x) < 0, and f strictly monotone decreasing,

• if −1/
√
2 < 1/

√
2, then f ′(x) > 0, and f is strictly monotone increasing,

• if 1/
√
2 < x < +∞, then f ′(x) < 0, and f is strictly monotone decreasing.

This gives us that x1 is a minimum point, and x2 is a maximum point, and in addition both are global!

ATTENTION!

We could have proceeded like recognizing that f is an odd function, i.e. it is symmetric with respect to
the origin. Please verify, it is easy!

So we can focus our attention to the positive half line, anything that is a (global) maximum point, its
negative on the negative side is a (global) minimum point. Please think about it!

Problem 61

Imagine that we consider the numbers

1,
√
2,

3
√
3,

4
√
4, . . . n

√
n, . . .

What do we think, which one of those is the largest?

As a matter of fact, is this a correct question? For in�netely many numbers there is not necessarily a
largest!

Hint. Consider the sequence
an = n

√
n

On the one hand a1 = 1, on the other hand, we have seen before that

lim
n→∞

an = 1



By the de�nition of this limit, we can say that there exists an index N , such that

1 < an < 1 + 0.01

if n ≥ N . Therefore, there certainly exists a largest element in the sequence, because it can be selected
from the �rst N (�nitely many) elements. Thus, the question is correct.

Turn to the selection of the largest element. Consider the following function on the positive part of the
real line:

f(x) = x1/x x > 0

At integer values this function takes the elements of the sequence. Since

f(x) = x1/x = eln x/x

then by the Chain-Rule:

f ′(x) =

(
1

x2
− 1

x2
lnx

)
eln x/x =

1

x2
(1− lnx)eln x/x

Obviously, the only critical point is x = e. The �rst and the last factors are always positive, so we deduce

• if 0 < x < e, then f ′(x) > 0, and f is strictly monotone increasing,

• if e < x < +∞, then f ′(x) < 0, and f is strictly monotone decreasing.

Therefore, the function f takes its global maximum at the point x = e. Since e ≈ 2, 7182..., we conclude
that largest element of the sequence an can only be at n = 2 or n = 3. This is decided by direct
comparison. Clearly √

2 <
3
√
3

so we have the largest element for n = 3.

Problem 62

Find the inde�nite integral on the interval x ≥ −2∫ (
3x2 − 4x+

√
x+ 2

)
dx

Hint. Integrate term by term:∫ (
3x2 − 4x+

√
x+ 2

)
dx = x3 − 2x2 +

2

3
(x+ 2)3/2 + C

Note that the square root means a power of 1/2.

Problem 63

Find the primitive function: ∫
sin 2x dx

Hint. By the duble angle formula sin 2x = 2 sinx cosx and this is precisely the derivative of sin2 x (use
the Chain-Rule), thus ∫

sin 2x dx = sin2 x+ C

Second solution. We could use the formula(
−cos 2x

2

)′
= sin 2x

and hence ∫
sin 2x dx = −cos 2x

2
+ C

ATTENTION!



We used two di�erent procedures and came up with two di�erent functions. Which one leads to the
correct solution? Answer: both. Indeed, the functions di�er only in an additive constant:

−cos 2x

2
=

1

2
sin2 x− 1

2
cos2 x = sin2 x− 1

2

(
sin2 x+ cos2 x

)
= sin2 x− 1

2

Problem 64

Evaluate the de�nite integral: ∫ 1

0

5x

1 + x2
dx

Hint. Rewrite the integral this way:∫ 1

0

5x

1 + x2
dx =

5

2

∫ 1

0

2x

1 + x2
dx

In the latter integral the numerator is exactly the derivative of the denominator. In this case the fraction
is the derivative of the logarithm of the denominator, that is:(

ln(1 + x2)
)′

=
2x

1 + x2

Verify this by using the Chain-Rule! The Newton-Leibniz-formula gives us∫ 1

0

5x

1 + x2
dx =

5

2

[
ln(1 + x2)

]1
0
=

5

2
ln 2

ATTENTION!

The above method can always be applied whenever f(x) > 0, and the integrand is of the form f ′(x)/f(x).
In this case the primitive function is ln f(x). For example:∫

sin 2x

1 + cos2 x
dx = −

∫
−2 sinx cosx
1 + cos2 x

dx = − ln(1 + cos2 x) + C

Problem 65

Another useful observation is (assume that n 6= −1):∫
f(x)n · f ′(x) dx =

f(x)n+1

n+ 1
+ C

Verify it by exploiting the Chain-Rule! For instance:∫
3x(5 + x2)3 dx =

3

2

∫
2x(5 + x2)3 dx =

3

8
(5 + x2)4 + C

or very similarly in the de�nite integral below:∫ 2

0

2x2
√

1 + x3 dx =
2

3

∫ 2

0

3x2
√
1 + x3 dx =

2

3
· 2
3

[
(1 + x3)3/2

]2
0
=

4

9
(27− 1) =

104

9

by the Newton-Leibniz-formula.

Problem 66

Carry out integration by parts in the problem below:∫ π

0

x2 cosx dx

Hint. Obviously, the correct allocation of roles is f ′(x) = cosx, and g(x) = x2, then∫ π

0

x2 cosx dx =
[
x2 sinx

]π
0
−
∫ π

0

2x sinx dx



We clearly have zero in the brackets. On the right-hand side use integration by parts again:∫ π

0

2x sinx dx = [−2x cosx]π0 +

∫ π

0

2 cosx dx = 2π

because the last integral is zero. Finally ∫ π

0

x2 cosx dx = −2π

Problem 67

Evaluate the de�nite integral: ∫ 1

0

arctanx dx

Hint. We use integration by parts in a smart way: set f ′(x) = 1 and g(x) = arctanx. Then the function
arctanx has to be di�erentiated instead of integrating. Therefore,∫ 1

0

1 · arctanx dx = [x arctanx]
1
0 −

∫ 1

0

x

1 + x2
dx =

π

4
− 1

2

[
ln(1 + x2)

]1
0
=
π

4
− 1

2
ln 2

A very similar trick is applied for �nding the primitive function of arcsinx∫
1 · arcsinx dx = x arcsinx−

∫
x√

1− x2
dx = x arcsinx+

√
1− x2 + C

in the open interval (−1, 1). In the last integral we used the fact that

− x√
1− x2

is precisely the derivative of
√
1− x2. Verify this!

In an analogous way we can �nd the primitive function of arccosx as well. Homework!

Problem 68

Use substitution in the following problem: ∫
5t3
√

2 + t4 dt

Hint. Introduce the substitution: x = g(t) = 2 + t4. Then g′(t) = 4t3. Set f(x) =
√
x, so:∫

5t3
√
2 + t4 dt =

5

4

∫
4t3
√

2 + t4 dt =
5

4

∫
g′(t)

√
g(t) dt

=
5

4

∫ √
x dx =

5

6
x3/2 + C =

5

6
(2 + t4)3/2 + C

where we performed the backsubstitution as well.

Problem 69

Consider now a substitution in a de�nite integral:∫ π/2

0

cos t

1 + sin2 t
dt

Hint. The convenient substitution in this integral is:

x = g(t) = sin t g′(t) = cos t and f(x) =
1

1 + x2

Carry out the substitution:∫ π/2

0

cos t

1 + sin2 t
dt =

∫ π/2

0

g′(t)f(g(t)) dt =

∫ π/2

0

g′(t)

1 + g(t)2
dt

=

∫ 1

0

f(x) dx =

∫ 1

0

1

1 + x2
dx = [arctanx]

1
0 =

π

4



Observe how we changed the bounds of the integration!

Problem 70

Take a look at a substitution the other way:∫ 1

0

x
√
1 + x dx

Hint. Apply the setting x = g(t) = t− 1, then g′(t) = 1, and hence∫ 1

0

x
√
1 + x dx =

∫ 2

1

(t− 1)
√
t dt =

∫ 2

1

(
t3/2 − t1/2

)
dt =

[
2

5
t5/2 − 2

3
t3/2

]2
1

that we can evaluate by plugging in the bounds (skipped). Please observe again, how the bounds of the
integration are changed!

Problem 71

Find the solution to the linear di�erential equation

y′ = −2y + 2

y(0) = 1

(also called initial value problem).

Hint. Use the Cauchy-formula:

y(t) = e−2t
(
1 +

∫ t

0

2e2s ds

)
= e−2t

(
1 +

[
e2s
]t
0

)
= 1

So the only solution to the problem is the constant function y = 1.

Problem 72

We can extend the solution method to linear di�erential equations with non-constant coe�cients the
following way.

Suppose that a and b are continuous functions on the interval I, and consider the initial value problem

y′ = a(t)y + b(t)

y(t0) = y0

where t0 ∈ I and y0 ∈ R are given. Introduce the notation

A(t) =

∫ t

t0

a(s) ds

and multiply the equation by the function e−A(t). Rearrenging the terms we get

y′e−A(t) − a(t)e−A(t)y =
(
ye−A(t)

)′
= b(t)e−A(t)

Integrate both sides and keep an eye on the initial condition:

y(t)e−A(t) − y0 =

∫ t

t0

b(s)e−A(s) ds

since the function A is zero at t0. Isolate y on the left-hand side:

y(t) = eA(t)

(
y0 +

∫ t

t0

b(s)e−A(s) ds

)
We call this equality the (extended) Cauchy-formula.



Problem 73

By using the Cauchy-formula �nd the solution to the initial value problem

y′ =
y

t
+ 2t2

y(1) = 2

on the positive half line t > 0.

Hint. In this situation t0 = 1, y0 = 2, moreover a(t) = 1/t and b(t) = 2t2. Furthermore

A(t) =

∫ t

1

1

s
ds = ln t

and accordingly

eA(t) = t and e−A(t) =
1

t

Substituting all these into the Cauchy-formula, we obtain

y(t) = t

(
2 +

∫ t

1

2s ds

)
= t(t2 + 1) = t3 + t

on the positive half line. Verify this result by di�erentiation and direct substitution!

Problem 74

Evaluate the improper integral ∫ ∞
0

1

1 + x2
dx

Hint. For any b > 0 we have: ∫ b

0

1

1 + x2
dx = [arctanx]

b
0 = arctan b

The limit of the arc tangent function when b→ +∞ is π/2, therefore∫ ∞
0

1

1 + x2
dx =

π

2

The integrand is an even function, so we can immediately come up with the following equality :∫ ∞
−∞

1

1 + x2
dx = π

Problem 75

Take an integer n ∈ N and evaluate the following improper integral:

In =

∫ ∞
0

xne−x dx

Attention, we have evaluated this integral for n = 0, n = 1 and n = 2 in the lecture!

Hint. Referring to the lectures, we have seen that I0 = 1, I1 = 1, and I2 = 2. Now take an integer n > 2,
and use integration by parts with the settings f ′(x) = e−x, and g(x) = xn respectively. Then

In =

∫ ∞
0

xne−x dx =
[
−xne−x

]∞
0

+ n

∫ ∞
0

xn−1e−x dx

The value of the brackets is zero. Think about it: at the lower bound xn is zero, while at the upper
bound we get zero in view of the L'Hôpital-Rule. On the other hand, the integral on the right-hand side
is precisely In−1. Thus, for every integer n we have

In = n · In−1



Since I1 = 1, this implies that In = n!.

Problem 76

In a similar way to the preceding problem, �nd the improper integral

In =

∫ ∞
0

λn

(n− 1)!
xn−1e−λx dx

where λ > 0 is a given constant.

Hint. Integrate by parts, now with the settings f ′(x) = xn−1, and g(x) = e−λx. Then we get

In =

∫ ∞
0

λn

(n− 1)!
xn−1e−λx dx =

λn

(n− 1)!

[
xn

n
e−λx

]∞
0

+
λn

(n− 1)!

∫ ∞
0

xn

n
λe−λx dx

=
λn+1

n!

∫ ∞
0

xne−λx dx = In+1

since (just like in the previous problem) the value of the brackets is zero. On the other hand, for n = 1
we have

I1 =

∫ ∞
0

λe−λx dx = 1

see the lectures!. Therefore, for any integer n ∈ N we get In = 1.

ATTENTION!

Carry out the integration by parts in a reverse order, and make sure that we receive precisely the same
answer. We note that this result has an important application in probability theory.

Problem 77

Is the following improper integral convergent?∫ ∞
1

√
x

x+ x2
dx

Hint. We can give an upper estimate on the integrand on the interval [1,∞) in the following way:

√
x

x+ x2
<

√
x

x2
=

1

x3/2

Then for an arbitrary b > 1 we obtain∫ b

1

√
x

x+ x2
dx ≤

∫ b

1

1

x3/2
dx

The integral on the right-hand side is convergent when b→∞, because in the denominator the exponent
of x is greater than 1, and the limit of the integral is 2 (see the lectures). Hence, the integral in the
original problem is convergent, and ∫ ∞

1

√
x

x+ x2
dx ≤ 2

In a similar way we can �nd a lower estimate as well:

√
x

x+ x2
≥

√
x

x2 + x2
=

1

2
· 1

x3/2

whenever x ≥ 1, and consequently∫ ∞
1

√
x

x+ x2
dx ≥ 1

2
·
∫ ∞
1

1

x3/2
dx = 1

This inequality combined with the upper estimate yields

1 ≤
∫ ∞
1

√
x

x+ x2
dx ≤ 2



Second solution. Carry out the substitution x = g(t) = t2 (where t ≥ 1). Then g′(t) = 2t, and for any
b > 1 we obtain ∫ b

1

√
x

x+ x2
dx =

∫ √b
1

2t2

t2 + t4
dt = 2

∫ √b
1

1

1 + t2
dt

= 2 [arctan t]
√
b

1 = 2
(
arctan

√
b− π

4

)
(Please note the change of the bounds!) When passing to the limit b → ∞ the limit of the arc tangent
function is π/2. Therefore, the integral is convergent, and∫ ∞

1

√
x

x+ x2
dx =

π

2

ATTENTION!

The �rst method to verify the convergence of the improper integral is much easier. Its disadvantage is,
however that it only provides an estimate and no exact value!

Problem 78

Find the sum of the following series:
∞∑
k=1

k

(
5

6

)k
Hint. For every −1 < x < 1 the sum of the geometric series is

∞∑
k=0

xk =
1

1− x

Taking the derivative of both sides, we have

∞∑
k=1

kxk−1 =
1

(1− x)2

(since for k = 0 the derivative of the constant term is zero). By substituting x = 5/6 we get

∞∑
k=1

k

(
5

6

)k
=

5

6

∞∑
k=1

k

(
5

6

)k−1
=

5

6
· 1

(1− 5/6)2
= 30

Problem 79

Find the sum function of the power series
∞∑
k=1

k2xk

in the open interval −1 < x < 1.

Hint. Compute the second derivative of the geometric series in the given interval:

∞∑
k=2

k(k − 1)xk−2 =
2

(1− x)3

This is almost what we want, but we have a multiplier k(k − 1) instead of k2, and both sides have to be
multiplied by x2. Our original problem is decomposed into a sum like this:

∞∑
k=1

k2xk = x2
∞∑
k=2

k(k − 1)xk−2 + x

∞∑
k=1

kxk−1

= x2
2

(1− x)3
+ x

1

(1− x)2
=

x2 + x

(1− x)3

since for k = 1 we have k2 = 1 as well.

ATTENTION!



Make sure that all these power series are convergent in the open interval (−1, 1).

Problem 80

Determine the sum function of the power series:

f(x) =

∞∑
k=1

2k−1
xk+1

k!

Hint. Factor out x, and rewrite the series in the following form:

f(x) =
x

2

∞∑
k=1

2k
xk

k!
=
x

2

∞∑
k=1

(2x)k

k!

The latter is almost the Taylor-series of the function e2x. However, the summation starts from k = 1,
therefore the term that belongs to k = 0 is missing. Thus, we have

f(x) =
x

2

(
e2x − 1

)
where inside the parentheses we subtracted the missing term.

Problem 81

Find the sum of the power series:
∞∑
k=0

k
xk

k!

(We will refer to this sum in Probability Theory.)

Hint. Simplify by k and factor out x:

∞∑
k=0

k
xk

k!
= x

∞∑
k=1

xk−1

(k − 1)!
= xex

Please observe that the last series is exactly the Taylor-series of ex (by a shift of indexing). This power
series is convergent on the entire real line.

Problem 82

Find the Taylor-series of the function f(x) = sinx.

Hint. On the one hand f(0) = 0, on the other hand the even order derivatives of the sine function are
plus or minus sine, all of them are zero at the origin. That means

f (2k)(0) = 0 k = 0, 1, 2, 3, . . .

The odd order derivatives are plus or minus cosine, in particular:

f (4k+1)(0) = cos 0 = 1 and f (4k+3)(0) = − cos 0 = −1 k = 0, 1, 2, 3, . . .

As a consequence, the Taylor-series will have the form:

∞∑
k=0

f (k)(0)

k!
xk =

∞∑
k=0

(−1)k

(2k + 1)!
x2k+1

= x− x3

3!
+
x5

5!
− x7

7!
+ . . .

Verify that this power series is convergent on the whole real line!

It can also be proven that the sum function is sinx, that is

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ . . .

The proof goes beyond the scope of this semester.



Problem 83

Find the Taylor-series of the function f(x) = cosx.

Hint. On the one hand f(0) = 1, on the other hand the odd order derivatives of the cosine function are
plus or minus sine, all of them are zero at the origin. That means

f (2k+1)(0) = 0 k = 0, 1, 2, 3, . . .

The even order derivatives are plus or minus sine, in particular:

f (4k)(0) = cos 0 = 1 and f (4k+2)(0) = − cos 0 = −1 k = 0, 1, 2, 3, . . .

As a consequence, the Taylor-series will have the form:

∞∑
k=0

f (k)(0)

k!
xk =

∞∑
k=0

(−1)k

(2k)!
x2k

= 1− x2

2!
+
x4

4!
− x6

6!
+ . . .

Verify that this power series is convergent on the whole real line!

It can also be proven that the sum function is cosx, that is

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+ . . .

The proof goes beyond the scope of this semester.

Problem 84

Find the power series whose sum function is f(x) = arctanx.

Hint. Consider the geometric series whose ratio is −x2, where −1 < x < 1. In this case the the series is
convergent, since −1 < −x2 ≤ 0, and its sum is given by:

∞∑
k=0

(−x2)k =
1

1 + x2

Integrate both sides from zero to x (ATTENTION! The power series can be integrated term by term,
this is far from being trivial!):

∞∑
k=0

(−1)k x
2k+1

2k + 1
=

∫ x

0

1

1 + t2
dt = arctanx

This series is convergent in the open interval (−1, 1), PLEASE VERIFY!

At x = 1 we obtain a series with alternating signs. Completely analogously to our earlier example (see
Chapter 2 for details) we can show that this series is convergent. This leads to the celebrated identity:

1− 1

3
+

1

5
− 1

7
+ . . . =

π

4

(taking into account that arctan 1 = π/4).

Problem 85

Find the critical points of the function:

f(x, y) = x2 − 2x+ 5 + y2e−y

Hint. Calculate the partial derivatives and examine the system of equations:

∂f

∂x
= 2x− 2 = 0

∂f

∂y
= 2ye−y − y2e−y = 0



The solutions are x = 1, moreover y = 0 and y = 2. Therefore, the function has two critical points, and
they are P (1, 0) and Q(1, 2).

It is easy to see that P (1, 0) is a minimum point of the function, since at x = 1 we have a global minimum
of the �rst three terms that depend only on x. On the other hand, at y = 0 we have a global minimum
of the last term that depends only on y. Consequently, for any point (x, y) 6= (1, 0) we get

f(x, y) > f(1, 0)

However, the other critical point Q(1, 2) is not an extremum. Indeed, if a coordinate x 6= 1 is taken, then
f(x, 2) > f(1, 2). On the other hand, if pick a coordinate y 6= 2 for example in the interval [1, 3], then
we have f(1, y) < f(1, 2). Thus, Q(1, 2) is neither a minimum point, nor a maximum point.

Problem 86

Consider the function

f(x, y) =
√

1 + x2 + 2y2 where x = g1(t) = te−t and y = g2(t) = e−2t

and �nd the derivative of the composition function F (t) = f(g1(t), g2(t)) by applying the Chain Rule.

Hint. Find the partial derivatives of f :

∂f

∂x
=

x√
1 + x2 + 2y2

and
∂f

∂y
=

2y√
1 + x2 + 2y2

Then calculate the derivatives of g1 and g2:

g′1(t) = (1− t)e−t and g′2(t) = −2e−2t

Now apply the Chain Rule:

F ′(t) =
∂f

∂x
(g1(t), g2(t))g

′
1(t) +

∂f

∂y
(g1(t), g2(t))g

′
2(t)

=
te−t√

1 + t2e−2t + 2e−4t
(1− t)e−t − 2e−2t√

1 + t2e−2t + 2e−4t
2e−2t

For practicing also �nd the derivative of F by a direct substitution of the functions g1 and g2, and by
di�erentiating this composition function (it is going to be somewhat complicated!). Make sure that you
get the same result.

Problem 87

Consider the function below, and �nd its tangent plane at the point P (1, 1)

f(x, y) = (4x2 − 2y3)
√
x2 + y2 + 2

Hint. First calculate the partial derivatives:

∂f

∂x
= 8x

√
x2 + y2 + 2 + (4x2 − 2y3)

x√
x2 + y2 + 2

∂f

∂y
= −6y2

√
x2 + y2 + 2 + (4x2 − 2y3)

y√
x2 + y2 + 2

At the given point P (1, 1) we have

∂f

∂x
(1, 1) = 17 and

∂f

∂y
(1, 1) = −11

Direct substitution shows that f(1, 1) = 4. Thus, the equation of the tangent plane is:

17(x− 1)− 11(y − 1) = z − 4

and this equation could be further simpli�ed.



Problem 88

Find the value of the parameter a, if the tangent plane to the function

f(x, y) = ay
√
4 + x2 + y2

at the point x = 2, y = 1 passes through the point P (3; 2; 13).

Hint. First �nd the (parametric) equation of the tangent plane. We need the partial derivatives of f that
are:

∂f

∂x
= ay

x√
4 + x2 + y2

∂f

∂y
= a

√
4 + x2 + y2 + ay

y√
4 + x2 + y2

The values of the partial derivatives at the given point are:

∂f

∂x
(2, 1) =

2a

3
and

∂f

∂y
(2, 1) = 3a+

a

3
=

10a

3

Direct substitution shows that f(2, 1) = 3a. Hence, the (parametric!) equation of the tangent plane is:

2a

3
(x− 2) +

10a

3
(y − 1) = z − 3a

If this plane passes through the point P (3, 2, 13), then the coordinates of the point must satisfy the
equation of the plane:

2a

3
+

10a

3
= 13− 3a

This equation has a single solution a = 13/7, which is the solution of the problem.

Problem 89

Find the critical points of the function:

f(x, y) =
2

x
+

1

y
+
xy

16

Hint. Calculate the partial derivatives and examine the following system of equations:

∂f

∂x
= − 2

x2
+

y

16
= 0

∂f

∂y
= − 1

y2
+

x

16
= 0

The unique solution to this system is x = 4 and y = 2.

Now we can argue the following way. If y = 2 is �xed, the function

2

x
+

1

2
+
x

8

has a minimum at x = 4. Similarly, if x = 4 is �xed, then the function

1

2
+

1

y
+
y

4

has a minimum at y = 2. Verify both statements by di�erentiation!

These arguments lead us to believe that the function has a minimum at x = 4, y = 2.

ATTENTION!

This is not a proof! It might happen that the function does not have an extremum. Starting from the
critical point P (4, 2) we only moved the coordinate x alone, or the coordinate y alone!

In order to prove that P (4, 2) is really a minimum point, consider the function

f(x, y) =
2

x
+

1

y
+
xy

16



in the positive quadrant, where x > 0 and y > 0. Direct substitution shows that f(4, 2) = 3/2. On the
other hand, all three terms on the right-hand side are positive.

For three pieces of positive numbers a1, a2 and a3 the inequality for arithmetic-geometric means gives us

a1 + a2 + a3
3

≥ 3
√
a1a2a3

where equality holds if and only is a1 = a2 = a3. Now apply this inequality for the numbers

a1 =
2

x
, a2 =

1

y
és a3 =

xy

16

After substitution and multiplication by 3 we obtain

2

x
+

1

y
+
xy

16
≥ 3 · 3

√
1

8
=

3

2

This exactly means that f(x, y) ≥ f(4, 2) in the positive quadrant, thus P (4, 2) is really a minimum
point.

Even further, in the inequality for arithmetic-geometric means equality holds if and only if

2

x
=

1

y
=
xy

16

The only solution to this system of equations is x = 4 and y = 2. Therefore, for every point (x, y) 6= (4, 2)
in the positive quadrant

f(x, y) > f(4, 2)

We conclude that P (4, 2) is a strict global minimum point of f in the positive quadrant. (Remark that
this last result was exclusively based on the inequality for arithmetic-geometric means. So, the problem
can be solved even without di�erentiation.)

Problem 90

Determine the value of the parameter a, if the tangent plane to the function

f(x, y) = axy
√
4 + x2 + y2 − 9

at P (2, 1) passes through the point Q(4, 0, 3).

Hint. First �nd the partial derivatives:

∂f

∂x
= ay

√
4 + x2 + y2 + axy

x√
4 + x2 + y2

∂f

∂y
= ax

√
4 + x2 + y2 + axy

y√
4 + x2 + y2

At the given point P (2, 1) we have

∂f

∂x
(2, 1) = 3a+

4a

3
=

13a

3
and

∂f

∂y
(2, 1) = 6a+

2a

3
=

20a

3

Direct substitution shows that f(2, 1) = 6a− 9. Hence the (parametric!) equation of the tangent plane:

13a

3
(x− 2) +

20a

3
(y − 1) = z − 6a+ 9

If this plane passes through Q(4, 0, 3), then the coordinates of the point must satisfy the equation of the
tangent plane:

26a

3
− 20a

3
= 12− 6a

The only solution to this equation is a = 3/2, which is the solution to the problem.



Problem 91

Decide whether the statement is TRUE or FALSE.

• If an → 0 and bn are sequences, then anbn → 0.

• The tangent line to the graph of the function f(x) = 2x lnx at x = 1 passes through the point
P (3; 6).

• If f is continuous on the interval [0, 1], then takes its minimum in the interval.

• A function is continuous on the interval [0, 1], if it has a limit at every point.

• Suppose a function f is di�erentiable in the open interval (a, b). The function f has a minimum at
an interior point x0 if and only if f ′(x0) = 0.

• Suppose f is twice di�erentiable in the open interval (a, b). Then f is concave if and only if f ′′(x) ≤ 0
at every point in the interval.

• If f is di�ernetiable at the point x0, then f is continuous at x0.

• If f is strictly monotone increasing on the real line, then at every point f ′(x) > 0.

• If the sequence bn is bounded, and an → 0, then limn→∞ anbn = 0.

• If f is twice di�erentiable, and x0 is a local maximum point, then f ′(x0) = 0 és f ′′(x0) < 0.

• If f is continuous on the interval [0, 1], then it is bounded on [0, 1].

• The tangent line to the graph of the function f(x) = −2x+4 lnx at x = 1 passes through the point
P (3;−2).

• A function is continuous on [0, 1] if and only if it has a left-hand limit and right-hand limit at every
point of the interval, and two limits coincide.

• A sequence is convergent if and only if it is monotone and bounded.

• A series with positive terms is convergent if and only if the sequence of partial sums is bounded.

• The sum function of a power series is continuous in the interval of convergence.

• If |f | is continuous on the interval [a, b], then so is f .


