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Preface

This book covers the necessary mathematics intended for students with ma-
jor in Economics. This course provides the fundamental mathematical back-
ground for studying Microeconomics, Macroeconomics, Statistics and other im-
portant topics in economics, or probabilistic or stochastic disciplines. The main
mathematical topics covered are Mathematical Analysis (Calculus), Probability
Theory, and Linear Algebra.

Most of the time, we avoid the rigorous mathematical proofs of our state-
ments. Instead, we rather present "justifications", which are intuitive, but not
necessarily precise. However, emphasis is placed on the correct formulations of
definitions. Some paragraphs indicated by the word ATTENTION cover some-
what more complicated arguments, their detailed explanations are given in the
classroom.

The text is illustrated by a large number of examples. On the one hand, they
help the deeper understanding. On the other hand, they give an idea, how to
apply them in practical situations. Therefore, the thorough study of examples
is a profoundly important homework assignment. Each chapter covers one week
of the semester, on a one week — one chapter basis.

In the end of each chapter references are given to the Textbook, which should
be interpreted the following way.

Textbook-1: K. Sydsaeter and P. Hammond, Mathematics for Economic Anal-
ysis, Prentice Hall, 1995, ISBN 0-13-583600-X, or any of the later edi-
tions.

Textbook-2 R. E. Walpole, R. H. Myers, S. L. Myers and K. Ye Probability
and Statistics for Engineers and Scientists, Prentice Hall, 2012, ISBN:
978-0-321-62911-1, or any of the later editions.

These textbooks are widely used at most recognized universities worldwide.

Some of the indicated homework exercises refer to the Textbook. Most of the
midterm quiz or final exam problems are similar or identical to those exercises.
More problems and exercises with solutions are posted on my web site. These
files are updated regularly.

Special thanks to my colleagues Csaba Puskas, Eva Ernyes and Balazs
Fleiner, who read the manuscript, and their valuable remarks significantly im-
proved the quality of the text. My thanks go to my former students as well,
their comments in or outside the classroom were extremely helpful for making
the text more understandable.

Budapest, September, 2020.

Peter Tallos
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Chapter 1

Sequences

1.1 Limits of sequences

The function
a:N—=>R
defined on the set of natural numbers N is called a (infinite) sequence.

We use the notation a,, for the n-th element.

n+1

C 0 _ 1
Some examples: a, =n, a, = nts.

ﬁ’a":

Definition 1.1 The sequence a,, is said to be convergent and tends to A, if
for any € > 0, there exists an index N, such that,

lan, — Al < e.

whenever n > N.

If the sequence is convergent then A is called the limit of the sequence a,,
and we write

lim a, =A.
n—oo

If there is no such real number A, then the sequence is called divergent.

Theorem 1.2 If the sequences a,, and b,, are convergent and lim,,_,., a, = A
and lim,,_,. b,, = B then

o lim, . (a, £b,) =A%+ B,
d hmn—>oo(an : bn) =A- B,

e if B#0, thenlimn%w%:%

13



14 CHAPTER 1. SEQUENCES

Example 1.3 Let us consider the sequence a, = % For an arbitrary € > 0
let N be any integer, greater than 1/¢. Then if n > N

1

~<e,

n
therefore, in view of Definition 1.1

lim —=0.
n—oo 1

Example 1.4 In a similar way we can find the limits of other sequences. Let
us consider for example the sequence

m?+5

p = ———.
n? —6n+8

If we divide both the numerator and the denominator by n?, then we have

2+ 5/n?
Uy = ————r
1—6/n+ 8/n?
where the limit of the numerator is 2 and the limit of the denominator is 1.

Therefore

lim a, =2.
n—oo

Every irrational number can be written as a limit of a sequence of rational
numbers. For example, consider the sequence a; = 1.4, ay = 1.41, a3 =
1.414, a4 = 1.4142... then

lim a, = V2

n— oo

Indeed, according to Definition 1.1, if ¢ = 10~%, then |a,, — V2| < ¢ for n > N.

A typical example for a sequence which has no limit is

an, = (-1)™.

1.2 Sequences tending to infinity

Let us investigate the sequence

an = 2n + 5.
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The terms of this sequence are greater than any given number K if n is large
enough. In that case, we say, that the limit of the sequence is infinity. We use
the symbol co to denote infinity.

Definition 1.5 We say that the sequence a,, approaches +oo if for any real
number K there exists an index N such that for every n > N we have a,, > K
This is expressed in the formula

lim a, =400,
n—oo

In a completely analogous way we can define the fact that a sequence ap-
proaches —oo, that is lim,, _, o a, = —00.

1.3 Squeezing Theorem

Often the limit of a sequence can be determined with the aid of other sequences
the limits of which are known. Such a situation is described by the Squeezing
Theorem.

Theorem 1.6 (Squeezing Theorem) Let a,, b, and ¢, be sequences such
that for every index n
an < by <cp

holds and, moreover, the sequences a, and c, converge to the same limit A.
Then the sequence b, is also convergent and lim,,_,. b, = A.

Example 1.7 Let a > 1 be a real number and consider the sequence b,, = {/a.
Since a > 1, the elements of the sequence can be written in the form

(L/a = 1 + hn I
where h,, > 0 for every n. By the Binomial Theorem we get
a=(1+hy)" >1+nh,.

where we skipped all other positive terms on the right-hand side. Rearranging
the inequality it follows that

-1
O<hn<a .

The expression on the right-hand side tends to zero, hence, by the Squeezing
Theorem h,, — 0, that is {/a — 1.

Obviously, if 0 < a < 1, then we can carry out the same argument, by taking
reciprocals of the elements of the sequence. This shows that our theorem holds
for any constant a > 0.
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1.4 Bounded and monotone sequences

Clearly, the elements of a sequence approaching infinity cannot stay between
two real numbers. We introduce the following definition.

Definition 1.8 The sequence a, is bounded from above, if there is a real
number K such that a, < K for every index n. If there is a real number K
such that a, > K for every index n, the sequence is said to be bounded from
below. A sequence is called bounded if it is bounded both from above and from
below.

Example 1.9 Decide whether the sequence
2n

" Van? +5+8

is bounded or not? Dividing both the numerator and the denominator by 2n
we get

a

1
an = ’
V1+5/4n% +8/2n

hence 0 < a,, < 1. Thus the sequence is bounded. It is also clear that the
smallest upper bound of the sequence is 1, while 0 is a lower bound, but not the
greatest one.

Monotone sequences have special importance.

Definition 1.10 We say that the sequence a,, is monotone increasing, if
an < apg1 for every index m. A decreasing sequence is defined similarly. A
sequence that is either increasing or decreasing is called monotone.

Example 1.11 Consider the sequence

2n—1
a, = .
n -+ 2

We have
_2n+4—5_2 5

n+2 - n+2
The value of the fraction subtracted from 2 decreases if n increases, therefore

the sequence a,, is increasing. It is also clear that the sequence is bounded from
above and its smallest upper bound is 2. Moreover,

Qn

lim a, =2.
n— oo
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Our next theorem states that this property is characteristic for bounded
monotone sequences.

Theorem 1.12  An increasing sequence which is bounded from above is con-
vergent.

An analogous statement holds for decreasing sequences that are bounded
from below.

We do not prove this theorem, but we note it is based on the property of real
numbers that we always have a least upper bound (among the infinitly many
upper bounds) which turns out to be the limit of the sequence.

Analogous theorem applies for monotone decreasing and bounded from below
sequences.

1.5 Euler’s number e

In many applications of mathematics the sequence

ap = (1 + i)n . (1.1)

appears frequently. We can show that this sequence is monotone increasing,
bounded from above, and consequently convergent.

To verify these properties we exploit the inequality between the arithmetic

and geometric means. In particular, if zq,...,z, are positive numbers, then
I S R
n
for every integer n. Equality holds if and only if 1 = ... = z,, that is, all the

numbers are equal.

Proposition 1.13  The sequence (1.1) is strictly monotone increasing and
bounded from above.

Proof. Let n be a given integer. Consider the n + 1 pieces of positive
numbers

r1=14+—, ...,z =14+ — zp41 =1
n n

which are not all equal. Using the inequality for the arithmetic and geometric
means, we have

1 n 1 1 n+1 1 n+1
14 1) o (rtitt —(1+
n n+1 n+1
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which exactly says that the sequence is strictly monotone increasing.

Second, consider the n + 2 pieces of positive numbers

1 1 1 1
$1=1+E7 ---,$n=1+5, Tntl = 5 Tnf2 = 5

which are not all equal. Using the inequality again, we have

1 1 n 1 1 n+2

LN ST n+1+ -1

4 n n—+ 2
Rearranging the inequality we obtain a, < 4, that means that the sequence is
bounded from above. Consequently, the sequence (1.1) is convergent. [

We use the notation e for the limit of this sequence. More elaborate compu-
tations show that e is irrational, and

e=2.7182...
Proposition 1.14 Let o be an arbitrarily given real number. Then

n
lim (14—%) =e”
n

n—oo

Example 1.15 Consider the sequence

o — on+1\"
" \2n+3

Then, by rewriting the sequence we get

on+1\" (1+ n) el/2
ap = =
2n+3

and hence lim,,_ o, a, = ¢~ 1.

Study at home:

1. Careful study of Mathematical Analysis Exercises.
2. Study the exercises below.

3. Textbook-1, Chapter 1 and Section 6.4.



Chapter 2

Infinite Series

2.1 Series

Definition 2.1 Let a be a real infinite sequence and compose the formal sum

Z ag . (21)
k=1

This symbol is called an infinite series (or just simply a series).

The meaning of this expression should be clarified, because only the addition
of finitely many real numbers was defined so far.

For any natural number n define the n-th partial sum of the series (2.1) as
follows:

n
Sn=>_ai (2.2)
k=1
This way we created a real sequence S,,.

Definition 2.2 The infinite series (2.1) is said to be convergent and its sum
is 9, if the sequence S, is convergent and its limit is S. In this case we use the

notation:
o0
S=> a
k=1

Otherwise the series is said to be divergent.

Please note that the infinite series is divergent if the sequence S,, has no
limit or its limit is not finite. For instance, if aj, = (—1)* for all k£ then

Sy = Z(fl)k =0if n is even and S,, = Z(fl)k = —1if nis odd
k=1 k=1

19
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therefore, the sequence S, has no limit and the series is obviously divergent.
2.2 Geometric series

Example 2.3 (Geometric series) Let r be a real number and consider the
infinite geometric series with common ratio 7:

0o
E Tk
k=0

The nth partial sum of this series is
n—1 1—pm .
if r#l
S = k = 1—r
== { T h
k=0
It is well known about the sequence a, = r™ that ™ — 0if |r| < 1, ™ — 1

if » = 1 and otherwise the sequence is divergent. Therefore, we get that the
geometric series is convergent if and only if |r| < 1 and then its sum is given by

= 1
Szzrkzl—r

=0

2.3 Convergence based on examining the partial
sums

Example 2.4 Consider the series

Nt 1
> WD (2.3)

k=2

The terms of this series can be rewritten in this form:
1 1 1

k(k—1) k-1 k

Observe that the n-th partial sum will be given like:
Spn=01-1/2)4+(1/2-1/3)+...+(1/(n=1)—1/n)=1-1/n

The limit of this sequence is obviously 1 (the negative and positive identical
terms cancel each other) and we conclude that the series is convergent and its
sum is S = 1.
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Example 2.5 Try to apply the above argument for the series
>
k3 —k
k=2

and by eliminating the terms that cancel each other, find the sum of the series.

2.4 Conditions for convergence

Theorem 2.6 (Necessary condition for convergence) Assume that the

series
oo
> ok
k=1

is convergent. Then limy_, o, ap, — 0.

Example 2.7 This theorem formulates a necessary condition which may not
be sufficient. For instance, we can show that the series

oo
k=1

fulfills the necessary condition but it is divergent. This series is called the
Harmonic series.

E

Indeed, let an integer n be given, and consider the 2"-th partial sum of the
Harmonic series. Rearrange the terms in the following way

Son =142+ (mt )4 (ot )bt (o et o
2’?’14— 2 3 4 5 .. 8 DR 2"’1/—1_'_1 DY 2/I'L )

where every expression within the parentheses goes up to the next power of 2.
The sum of terms inside the parentheses is always bigger than 1/2, and we have
exactly n pairs of parentheses, hence

1
52n > 1 + in .
That tells us that sequence of partial sums is not bounded and therefore, the

series is divergent.

Theorem 2.8 (Sufficient condition for convergence) Let us suppose that
for each index k we have ay, > 0 and the series

&S]
E ag
k=1
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is convergent. If for every index k we have 0 < by < ay, then the series
o0
> b
k=1

is also convergent.

Indeed, on the one hand the sequence of partial sums S, = ZZ:1 by is
monotone increasing, and on the other hand it is also bounded. Consequently,
the series is convergent.

In an analogous way we may formulate a sufficient condition for divergence:
if all terms of a series are bigger than the nonnegative terms of a divergent
series, than it is divergent as well.

Example 2.9 As an application consider the series > .-, 1/k2. Since for

every k > 1
1 1

J— < R
k2 " k(kE-1)
then for the n-th partial sums we get

n

1

"1
=N = <1 -
S k;k2< T2 k=

k=2

According to the sufficient condition we conclude that this series is convergent,
and for its sum we have S < 2.

In general, it can be verified that the series Y 7~ | 1/k is divergent, if « < 1,
and it is convergent if & > 1 (see more details in Chapter 9).

2.5 Absolute convergence

In this section we examine series that may contain positive and terms as well.

Consider the series -
> (2.4)
k=1

where the terms aj are not necessarily all nonnegative.

Definition 2.10 We say that the series (2.4) is absolutely convergent, if the

series
oo
> lax
k=1

is convergent.
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Theorem 2.11 If a series is absolutely convergent, then it is convergent as
well.

We do not go into the details of the proof. As a justification we note the
following. If S,, denotes the sum of the absolute values of the first n terms, then
by our condition it is convergent and

n
limz lag| =lim S,, = S.
k=1
Let R,, and T}, denote the sum of the negative and positive terms respectively

from the first n terms of the series Y p- ; ax. Then R, is monotone decresing,
while 7;, is monotone increasing, and both sequences are bounded, since

R,>-5 and T,<S.

Therefore both sequences are convergent, in notation: lim R,, = R, and lim T}, =
T. Thus the limit of of S,, can be given as:

lim S,, = hmza,c =1im(T, + R,) =T+ R,
k=1
and we deduce that the series is really convergent.

The example below shows that the converse of our previous theorem is not
necessarily true.

Example 2.12 Consider the following series with alternating signs:

0 -1 k—1
e

k=1

Clearly, this series is not absolutely convergent, since the series with the absolute
values of the terms is identical to the Harmonic series, which is divergent.

We show however, that the series above is convergent. Indeed, the sum of
the terms with even indices:

S — 1_1 + 1_1 + + 1 _i —
n = 2 3 4) "7 " \on—1 2m)

- Lyl L
2 12 7T 2n(2n—1)

In view of Example 2.3, this sequence is monotone increasing and bounded from
above, because S, < 2. Hence, it is convergent. Denote its limit by
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On the other hand, for the sum of the terms with odd indices we have
1
2n

therefore, lim So,_1 = S, which means that lim S,, = S. This implies that the
series is convergent.

Son—1 = Son +

2.6 Quotient-test

In this section we formulate a very useful sufficient condition for the convegence
or divergence of infinite series. Create the absolute values of the quotients of
the consecutive terms of the series

o0

> a

k=1
and suppose that the limit

Qk+1
ag

lim

k—o0

exists.

Theorem 2.13 (Quotient-test)

o If a < 1, then the series is absolutely convergent.
o If a > 1, then the series is divergent.

o If a =1, then both cases can occur.

Proof. If a < 1, then choose a real number 8 with o < § < 1. Then from

a certain index N we have
Ak+1
ag

<B

for every k£ > N. Then goin step-by-step backward we get
|ags1| < Blax| < BPlag| < ... < BN ay]

So, for the n + 1-th partial sum

n

n N-1
Snt1 = Z lart1| < Z lak+1| + |an] - Z 5k_N+1
k=0 k=0

k=N

where the last sum is the partial sum of a convergent series (in view of 0 < 8 <
1), and consequently bounded if n — oo. This proves the statement.



2.6. QUOTIENT-TEST 25

If @ > 1, then the the proof can be carried out similarly, with a choice of
1 < B < a we can come up with an estimate with a divergent geometric series.
O

Example 2.14 In this example we demonstrate that in the case of a = 1
nothing can be stated about the convergence of the series.

Indeed, if the divergent Harmonic series is considered, then for a = 1/k we
have k
Bt T 51 ifk— oo,
ag k+1

However, if we take the convergent series, where aj, = 1/k?, then

a k 2
R _ (2 ) g if Kk — oo,
ag k+1

which demonstrates that both cases can occur.

Example 2.15 Find out if the series

0 k‘2 . 2k
k!
k=1

is convergent or not. Use the Quotient-rule:

0

arpr _ (kA DP2M K (B4l S R
ar  (k+1)! k228 k k+1

Thus oo = 0 < 1, which tells us that the series is convergent.

Study at home:

1. Review the "Mathematical Analysis Exercises"
2. Additional homework: check the exercises below

3. Textbook-1, Section 6.5.



26

CHAPTER 2. INFINITE SERIES



Chapter 3

Limits and continuity

3.1 Basic concepts

In the subsequent chapter we study the limit of functions f : R — R. Let xg
be a point (possibly equal to +o00) for which there exists a sequence z,, in the
domain of f such that x, # z¢ and x,, — xo.

Definition 3.1 The limit of the function f at the point zq is said to be A
(which can be +00) and in notation

lim f(z)=A

Tr—rxo
if for any sequence z,, from the domain of f whenever x,, — g, x, # xo, then

f(zn) = A

ATTENTION!

Please note that the limit of f at z¢ has nothing to do with f(xz(). The
function may not even be defined at zy. However, in some cases the limit may
be equal to f(xg).

Theorem 3.2 If the functions f and g have limits at xo and lim,_,,, f(z) = A
and lim,_,,, g(x) = B then

o limy oy (f £ 9)(z) = A+ B,

o lim, ., (f g)(x)=A-B,
o if B#0 then limg;_,,, 5(37) = %,

e if A#0 and B =0 then lim,_,,, 5(3:) = +oo0.

27
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Example 3.3 Determine the limit

This function is not defined for x = 2 but it is equal to x4 2 at any point = # 2.
Therefore it is easily seen that

5627

4
lim =lim(z+2)=4.

=2 r — 2 r—2

Example 3.4 Consider the function f(z) = 1/x. This function is not defined
at x = 0. On the other hand, for any sequence x, > 0, z,, — 0 from the domain
we have f(x,) — +oo while f(—x,) — —oo. Thus this function has no limit at
x =0, that is

does not exist.
Example 3.5 Consider the following limit:

o 2t — b3 4 —8
lim
z—+oo 83 — 22 412

Dividing both the numerator and denominator by 2% we get the expression

2z —5+1/2% — 8/x3
8—1/x+12/a3

Now for any sequence xz,, — +oo the limit of the numerator is +oo, while the
limit of the denominator equals 8, thus the fraction tends to +oo.

Very similarly, we can show that the limit of the fraction is —oo, if z — —o0.

Example 3.6 Show that

lim (V1422—2)=0.

T—r+00

Indeed,

Vi+zZ 42 1
\/1+x2—x:<\/1+x2—x) =
Vi+zz4+zx V1i+224z

and the expression on the right hand side approaches 0 if + — +o0.



3.2. SQUEEZING THEOREM 29

3.2 Squeezing theorem
In this section we formulate the Squeezing theorem for limits of functions.

Theorem 3.7 (Squeezing Theorem) Let f, g and h be real functions such

that for any x
f(z) < g(z) < h(z)

h
and furthermore, lim,_,,, f(x) = limy_,, h(x) = A. Then the limit of the
function g at xo exists, and

lim g(x)=A.

Tr—xo

Example 3.8 Find the limit

sinx

lim
x—0 X

This is an even function, therefore it is enough to consider positive values of z. A
geometric interpretation (open the Figures file!) shows that for all 0 < x < 7/2

sine < x < tanz.
Dividing this inequality by sinz, we get

1
1< 2 <

sinx  cosz
By taking the reciprocals, we obtain
sin x
cosr < — <1
T
for every 0 < & < /2. In view of the Squeezing Theorem we receive
sinx

lim =1
x—0 X

3.3 Omne-sided limits

In some situations the limit of a function at a given point does not exist, but
we still can speak about a one-sided limit.

Definition 3.9 We say that the right-hand limit of f at the point zy exists
and is equal to

lim f(z)=A

T—xo+
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if for any sequence x,, — g, x,, > x¢ from the domain of f we have f(z,) — A.
The left-hand limit is defined analogously.

It is obvious from the definition that if at a point the limit exists, then both
one-sided limits exist, and they are equal.

Example 3.10 Consider the function:

_2a:+1
)

f(x)

Tt is easy to see that if x,, approaches 2 from the right then f(x,) — +oo, while
if z,, approaches 2 from the left then f(z,) — —oo. Therefore

lim f(z)=—-c0 and lim f(z)=+4o0.

T—2— r—2+

We can say that the limit of a function at a point exists if and only if both
one-sided limits exist, and they are equal (the common value is the limit).

3.4 Continuity

Definition 3.11 Consider a function f that is defined on an interval. We say
that the function f is continuous at a point zg of its domain if

lim f(x) = f(xo) -

r—x0
If f is not continuous at a point x of its domain, then it is said that the function
has a discontinuity there.

A function is simply called continuous, if it is continuous at every point of
the domain.

ATTENTION!

Continuity is defined only at points in the domain of the function. For
instance the function f(x) = 1/x is continuous at each point of its domain, that
is at each x # 0. The point xy = 0 is not in the domain of f, so we cannot
speak of discontinuity here.

On the other hand, f cannot be defined at zg = 0 so that it becomes
continuous, as the limit of the function does not exist there.
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Functions obtained from continuous function by composition or by elemen-
tary operations (addition, subtraction, multiplication, division) are also con-
tinuous except maybe at points, where the denominator of the fraction equals
ZET0.

Example 3.12 For instance, consider the following function:

l—cosz :
e ifx#0

f(x):{ if 2 =0

2

It is clear that this function is continuous for all  # 0, furthermore

1—cosx 1—cos?zx _ sinx 2 1
x? (1+cosx)z?

- x "1+cosz

This shows that the limit of the function at 0 equals 1/2. Thus, this function is
continuous on the whole real line.

We think of a continuous function as one whose graph can be drawn by an
unbroken curve (without lifting the pencil from the paper). This is expressed
in Bolzano’s theorem.

Theorem 3.13 (Bolzano) Let f be a continuous function on the finite interval
[a,b], and suppose that f(a) and f(b) have different signs. Then there ezists a
point ¢ € (a,b) such that f(c) =0.

We do not prove the theorem, but note that a simple idea would be bisecting
the interval, and selecting the part where f has opposite signs at the endpoints.
If we keep doing this infinitely many times, we receive a sequence of intervals, so
that each one is the half of the preceding interval. We think that the intersection
of the intervals reduces to a single point, which is necessarily a zero of the
function.

Example 3.14 Prove that the equation
27° — 182* + 32 + 202 — 13 =0

has at least one real solution. The expression on the left side of the equation
defines a continuous function f for which

xglfoof(x) =400 and xgrzloo f(z) = —00.
Therefore f is positive for sufficiently large values of x and takes negative values
if x is small enough. Therefore, by the Bolzano-theorem the equation has at least
one real solution.
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The following property of continuous functions is of fundamental importance
for extremum problems and optimization.

Theorem 3.15 (Weierstrass) Let [ be a continuous function on the finite
interval [a,b]. Then f takes its mazimum and minimum on this interval.

We do not prove this theorem, but note that the function has to be bounded,
and there exists a lowest upper bound. It can be shown that the lowest upper
bound is the maximum of the function. A similar argument applies for the
minimum.

For example, the function

x fo<z<l1
f(”")_{ 3—z ifl<az<2

does not reach its maximum value on the interval [0, 2], but as we see, it is not
continuous at 1.

Study at home:

e Textbook-1, read Sections 6.1, 6.2, 6.7, 7.1 and 7.2.
e Textbook-1, Exercises on pages 171-172, 177-178, 198, 202 and 205.

e Thourough study of "Mathematical Analysis Exercises" on my web site.



Chapter 4

Differentiation of functions

4.1 The derivative

Let f be a real function defined on an interval, and suppose that x( is an interior
point of the interval.

Definition 4.1 We say that f is differentiable at z( if the following limit

exists and it is finite:
lim f(zo+h) = f(zo)
h—0 h

This limit is called the derivative of f at the point zg, its notation is f’(zq).
We say that the function f is differentiable in an interval, if it is differentiable
at every interior point of the interval.

The quotient above is called the difference quotient of f at the point x.

Example 4.2 Consider the function f(z) = 22 on the real line. The difference
quotient at xg is:

f(wo+h})L—f(wo) _ (xo+f;>2 ~TS gy 4 h

whose limit is 2z, if h — 0. Consequently
f/(.%‘o) = 2;1’,‘0 .

In a very similar way we can show that in the case of f(z) = 2" (where n is an
integer),

f(xo) = nap~t.

In fact, use the identity

(o +h)" — 28 =h((zo +h)" "+ (o +h)" 220+ ... +ap )

33
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Theorem 4.3 If f differentiable at x, then it is continuous at x.

Proof. Let h,, — 0, h,, # 0 be a sequence, then by the differentiability
hyp) —
i L@ = @)
n— o0 hy,

which is finite. This is only possible if lim,_, (f(z + h,) — f(x)) = 0, that is
lim, o f(z + h,) = f(x). This exactly means that f is continuous at z. [J

ATTENTION! The converse statement is not true in general, as it is demon-
strated by the following example

Example 4.4 Consider the function f(z) = |z| on the real line, and examine
its difference quotient at xg = 0. It is clear that
f(h) = f(0) _ |n[ _ 1 ifh>0
h T h | -1 ifh<O
and therefore, the limit does not exist when A — 0, since the right-hand limit
is +1, while the left-hand limit is —1. Thus the function f is not differentiable
atz =0
However, f is differentiable at any other point, in particular f/(z) = 1, if
x>0, and f/(z)=-1,if z <O0.

4.2 Tangent lines

Geometric interpretation (see Figures.pdf) shows that f'(xg) is the slope of the
tangent line to the graph of f at xg.

By using this observation, we can give the equation of the tangent line to
the graph of f that passes through the point P(xq, f(zo)):

y = f'(zo)(z — x0) + f(z0) .

For instance, the equation of the tangent line to the graph of f(z) = 3 at
xog=11s
y=3x-1)+1

Example 4.5 Find the equation of the tangent line to the graph of f(z) = sinx
at g = 0. On the one hand, the tangent line passes through the origin, on the
other hand, the slope is:

. f(h
! —
f (0) o flzlg%) h h—0

Therefore, the equation is y = x that intersects the graph at the origin.
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4.3 Rules of differentiation

Consider the functions f and g, and assume that both are differentiable at x.
The rules below follow from the basic properties of limits.

Derivative of a sum If o and § real numbers, then af(z) + Sg(x) is differ-
entiable at x and

(af(x) + Bg(x)) = af'(x) + By (x) ,
Derivative of a product f(x) - g(z) is differentiable at x and
(f(z) - g(x)) = f'(z) - g(x) + f(x)  g'() ,

Derivative of a quotient if g(x) # 0, then f(z)/g(x) is differentiable at z,

o <f@ﬂ)/:{p@gﬂx)—fﬁﬂgT@.

9(x) g(x)?
As an example let us see how we can prove the differentiability of the product:

flx+h)-gz+h) - fz)-g(x)
h

f@+h)-gla+h) = fa+h)-g(a)
h
Ja+h) - g@) = @) -glx) _
h
glath) —g) | f@th) - f@)
I

Here the limit of the first factor is f(z)g'(x) based on the continuity of f, while
the limit of the second factor is f’(x)g(z), if h — 0. That completes the proof.
The proofs of the other rules can be carried out in a very similar way.

+

flx+h)

Example 4.6 The tangent line to the graph of f(z) = 1/ taken at any point
encloses a triangle with the coordinate axes. (See Figures.pdf.) Show that the
area of this traingle is the same, no matter at what point the tangent line is
taken.

Because of the symmetry, it is enough to focus to points zy > 0. By the
Quotient-rule

flao) =

hence, the equation of the tangent line taken at xg is:

o )+ —
=——(z—= —
Yy x(2) 0 o

The intersection points with the coordinate axes are:
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if = 0, then the intersection point on the y-axis is b = 2/xg

and similarly
if y = 0, then the intersection point on the z-axis is a = 2xy.

Thus, the are of the enclosed right triangle is
1 1 2
Aziab:§-2x0-—:2

which is independents of the choice of zg.

4.4 Composition of functions

Let f and g be both R — R functions so that the range of g lies inside (subset)
the domain of f. Then the function

z— f(g(x))

is called the composition of f and g. For this function we use the notetation
Jelolése f o g, that is:

fog(x) = flg(x)) .
For instance if f(z) = /z and g(x) = 1 + 22, then

foglx)=vV1+a2.

Attention, the order is important!

In general fog # go f. If we consider the example above, then
goflx)=1+z

but this function is defined only for z > 0!

It may even turn out that f o g is defined on the nonnegative half line, but
g o f is not defined anywhere. For instance, if

f@)=—1-a* and ga)= a7,

then fog(x) = —1—22 if x > 0, but go f(x) = vV/—1 — 2% is not defined for
any real number.
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4.5 Chain-Rule

Our theorem on the differentiability of composition functions is a very powerful
tool for calculating the derivatives of more complicated functions.

Theorem 4.7 (Chain-Rule) Suppose that g is differentiable at x, and f is
differentiable at g(x), then fog is differentiable at x, and its derivative is given

by
(fog)(x)=f'(9(x))- g (x)

If we introduce the notation k = g(z+h) — g(x), then the difference quotient
of the composition function f o g at x can be written like:

flg(x+h) — fly(z) _
h

flg(@) + k) — flg(=)) g(z+h)—g(x)
k h

provided g(z+h)—g(z) # 0. In the case of h — 0, in view of the continuity of g,
we have £k — 0, and consequently, the limit of the expression on the right-hand
is:

f(g(x))-¢'(x)

Unfortunately, this idea does not work when £ = 0. In that case the proof is
somewhat more complicated, we do not go into the details of that situation.

Example 4.8 For example, consider the function

F(z) = (1+ 3z —2?)5.
We can find the derivative without expanding the 6-th power, if we notice that
with the notations f(x) = 2% and g(z) = 1 + 32 — 22 we can write F = fog.

Therefore, by the Chain-Rule:

F'(z) =6(1+ 3z —2%)5- (3 —2x) .

Example 4.9 Now find the derivative of

3
2z +3
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Then by using the notations

2z +3
T 5422

9(x) and  f(z) = o

we get F'= f og. Keep in mind that g is a quotient (use the Qutient-rule!), so
we obtain

F'(z) = f'(g(x)) - ¢'(x) = 3 <2$ + 3) 2(5 4 2%) — 2z(2z + 3)

5+ 2? (54 22)2

that form can still be further simplified if we wish.

Study at home:

1. Review the "Mathematical Analysis Exercises"
2. Review the Exercises below

3. Textbook-1, Chapter 4, Sections 5.2 and 5.6.



Chapter 5

The Mean Value Theorem

5.1 The inverse function

Consider a function f : R — R that is one-to-one on a given interval. In the
case of a continuous function this means that it is either strictly monotone
decreasing or strictly monotone increasing (in view of Bolzano’s theorem, see
Theorem 3.13).

Definition 5.1 The inverse of f is the function f~! whose domain is the
range of f, its range is the domain of f, and further

fTlofl@) =x

at every point in the domain of f.

This “reverse” correspondence can be obtained by taking the equality
y=f(x)
and isolate x as the function of y:
r=f"'(y)-
For instance, if f(z) = (22 + 5)3, then we get

=Y

Geometrically this means that the graphs of f~! and of f are symmetric
with respect to the staight line y = = (that bisects the right angle at the origin).

39
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5.2 Differentiability of the inverse function

Theorem 5.2 Assume that f is continuous and strictly monotone on a given
interval, and it is differentiable at an interior pont x. Also suppose that f'(x) #
0. Then f~' is differentiable at y = f(z), and

Roughly, the situation is the following. Consider the difference quotient:

fMy+h) - ')
h

Let z and x + k be points in the domain of f such that y = f(z) and y + h =
f(z + k). Then the difference quotient can be written in the following form:

z+k—x B 1
_ T f(ztk)—f(x)

If here h — 0, then k¥ — 0 (ATTENTION, this is not triviall It means the
continuity of f=1.), and hence, the limit of the fraction on the right-hand side
is really 1/f'(x).

Example 5.3 Find the derivative of the function

glx) = Yz

at a point = > 0. As we see, g is the inverse of the power function f(z) = =™
on the non-negative half line, that is g(y) = f~!(y). Thus,

1 1

1 .,
ne"~1  n

.yn

since y = 2™ and consequently
n

-1
€T -1 _ ynn

In view of this example we conclude that for every rational exponent r the
function F(x) = «" is differentiable at every point x > 0, and its derivative is:

F'(z) =ra" 1.
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Example 5.4 Calculate the derivative of the function

Fx)=v1+a*

Set f(z) = vz and g(x) = 1 + 2%, with these notations we have F' = f o g.
Making use of the Chain-Rule we get

5.3 The exponential and logarithm functions

Consider the exponential function with base e on the real line, and its inverse,
which is the logarithm function with base e (that is denoted by the symbol In):

f(z)=¢€" fYz)=Inz (z>0).

They are called the natural exponential function, and the natural logarithm
function, respectively. Below we find their derivatives. We start with the equal-

ity
. 1\"
lim (14 — =c.
rx—+oo x

Find the derivative of the natural logarithm function at x¢ = 1.

ln(l—i—f;)—lnl — n(1 4 B

whose common right-hand limit and left-hand limit at zero is Ine. (Here we
supposed the continuity of the logarithm function.) Therefore, the derivative is
1.
The derivative of f(x) = e* at the point 0 can be determined by exploiting
our theorem about the differentiability of the inverse function:
eh —1 1

fO) =l ——= o =

This enables us to get the derivative of the exponential function at an arbitrary
point x:
erth _ev el —1
/ . T 1.
z)=lim ——— =¢% - lim
(@) h—0 h h—0 h

:em

Using the differentiability of the inverse again, we obtain the derivative of the
logarithm function at any given point z > 0:

(@) =z = 5

T
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Example 5.5 As a straightforward application, find the derivative of the
function

f(z) = 2

at any given point x > 0, where « is an arbitrary real exponent. First we write:
f({,E) = 2% = ealnx

Then, in view of the Chain-Rule we get

1 1
f/(:E) _ aiealnz — a=x® = Ozl‘a71
T x
This tells us that the differentiation can be carried out the same way as in the

case of rational exponents.

5.4 Necessary condition for an extremum

Consider a function f: R — R.

Definition 5.6 We say that a point xo in the domain of f is a (global)
minimum point, if f(z¢) < f(z) for every point z # x¢ in the domain of f.

We say that a point z( in the domain of f is a local minimum point, if there
exists a positive number € > 0 such that f(z¢) < f(x) at every point in the
domain z with 0 < |z — x| < €.

In both cases we strict minimum points if strict inequalities apply.

We can formulate analogous definitions for maximum points.

It is obvious that a global minimum point is also a local minimum point.
The converse statement however, is not true in general, as it is shown in the
following example. For instance, the function

(x+1)2 haz<0
f(gc):{(xl)2 h:mz()

admits a local maximum at z = 0 (here the function is continuous, but not
differentiable, check it!) but this function does not have a global maximum,
since it is not bounded from above.

For differentiable functions we can present the following charcterization of
local extreme (minimum or maximum) points.

Theorem 5.7 Let us suppose that [ is defined on an interval, at it is dif-
ferentiable at an interior point xo. If xo is a local minimum point of f, then

f'(0) = 0.
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Proof. Indeed, consider the difference quotient:

f(xo +h) — f(x0)
- :

If h > 0, then the difference quotient for small values of A is non-negative,
and consequently, the right-hand limit is non-negative. On the other hand, if
h < 0, then similarly, the left-hand limit is non-positive. By the differentiability
assumption the difference quotient has a limit when A — 0, which therefore, can
only be zero. Thus f/(zg) = 0.

This theorem formulates only a necessary condition for minimum, which is
not sufficient! For example, the function f(r) = 2 has no extereme point at
x =0, but f/(0) =0.

In the case of a differentiable function, those points zo where f/(z) = 0, are
called critical (or sometimes stationary) points. Using this vocabulary, we may
say that the extreme points of a function are critical, the converese statement
is not necessarily true.

5.5 Lagrange’s Mean Value Theorem

Based on the geometric interpretation, the Mean Value Theorem formulates a
very illustrative statement.

Theorem 5.8 Let f be continuous on the finite closed interval [a,b], and
differentiable in the interior of the interval. Then there exists a point £ € (a,b)

o that 70) -~ fa)
Fren — f(a
Proof. Introduce the function
f(b) — f(a)

9(a) = (@) = fl@) = L5 @~ a)

According to the assumptions, this function is continuous on the interval [a, b],
hence, by Weierstrass’ Theorem (see Theorem 3.15) it achieves its minimum
and maximum in [a, b] intervallumon. At least one of the extreme points (either
the minimum, or the maximum) is in the interior of the interval, because

gla)=g(b) =0.

If this interior extreme point is & € (a, b), then by our previous theorem ¢'(§) =

0. This exactly means that
() f(b) — f(a)

=0.
b—a

Please observe, that the continuity assumption in our theorem is vital!
Sketch a figure to show that!
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5.6 L’Hopital’s Rule

The procedure below makes it possible to compute complicated limits relatively
easily.

Let both f and g be differentiable, and their derivatives f’ and ¢’ are con-
tinuous in a neighborhood of a point zg, and suppose that f(zp) = g(zo) = 0.
We want to find the limit

)
1m

w0 g(x)
which is of the form 0/0 so “undefined”.
By the Mean Value Theorem

f@ MR r©
g(x)  g=glzo) — g/(y)

r—Io

where £ and 7 are points between x and xy. Now if x — z(, then both £ — xg
and n — xg. Therefore, by the continuity of the derivative functions we get
T "z
f@) )

lim 2 =
w0 g(x) a0 ()

This equality is called L’Hopital’s Rule. If the resulting limit still has the form
0/0, then apply L’Hopital’s Rule again until a "decent" limit is received.

Example 5.9 Find the following limit by using L’Hépital’s Rule:

I 2sinx
m ——7—--=
z—=0]1 — 1+
Taking the limits of the derivatives, we have:
lim 2sinz 2cos0 _ 4

201 —VI+a _2\/i+0

Study at home:

1. Review of the exercises in "Mathematical Analysis Exercises"

2. Textbook-1, Sections 5.1, 5.4, 7.5 and 7.6, Chapter 8.



Chapter 6

Complete analysis of
functions

6.1 Monotone functions

Definition 6.1 We say that f is monotone increasing on an interval, if for any
two points of the interval with z; < x5 we have f(x1) < f(z2). An analogous
definiton applies for monotone decreasing functions.

We say that the function is strictly monotone (in either case), if we have
strict inequalities in the definition.

Theorem 6.2 Let [ be continuous on a finite closed interval [a,b], and dif-
ferentiable in its interior. If we have f'(x) > 0 at every interior point of the
interval, then f is strictly monotone increasing on [a,b].

Indeed, if 21 < x5 are two arbitrary points of the interval [a, b], then by the
Lagrange’s Mean Value Theorem there exists a point 1 < £ < z9, such that

f(x2) = f(x1) = f(§) (w2 —x1) .
By our assumption the right-hand side is positive, therefore
f(z2) = f(21) >0

that means f is strictly monotone increasing on the interval.

Now, let us examine a function that is monotone increasing and differentiable
in an interval. For any two different points « and x + h in the interval we have:

flath) = )
/@)

45
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regardless of h > 0 or h < 0. Passing to the limit » — 0 we obtain f’(z) > 0.
Thus, we can formulate the following theorem.

Theorem 6.3 Let f be continuous on the interval [a,b], and differentiable
in its interior. Then [ is monotone increasing on the interval if and only if
f'(z) > 0 at each interior point of the interval.

A completely similar statement can be formulated for monotone decreasing
functions.

However, the assertion that if f is strictly monotone increasing, then we
would have f’(x) > 0 for every interior point x is NOT TRUE. For example,
the function f(x) = 23 is strictly monotone increasing on the entire real line,
but f/(0) = 0.

6.2 Finding extreme points

Consider a function f : R — R and pick an interior point zg in the domain.
Suppose that f is differentiable at x.

As we have seen, the necessary condition for xg for being an extreme point
is f'(xg) = 0. The question is, how we can formulate a sufficient condition
for really having an extremum at zg. It is easy to see that if there exists
a positive number £ > 0 so that f is monotone decreasing on the interval
[xo — &, zo], moreover f is monotone increasing on the interval [xg, z¢ + £], then
x is definitely a local minimum point of f.

For differentiable functions we can summarize this observation in the follow-
ing theorem.

Theorem 6.4  Assume that f is differentiable in an interval, and xo is an
interior point of the interval. If there exists a positive number € > 0, so that

o fl(x) <0, ifx € (xg—¢,x0)
o () >0, ifx € (x9,20+¢)

then xo is a local minimum point of f.

Obviously, an analogous statement can be formulated for the case of local
maximum as well.

Example 6.5 Find the extreme points and the intervals of monotonicity of
the function
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By the Product-Rule, the derivative is:
F@) = (22 —a%)e "

whose sign depends exclusively on the first factor (the second is positive). Con-
sequently:

o If z € (—00,0), then f'(z) < 0, so f is monotone decreasing.

o If x =0, then f/(0) = 0, this is a critical point.

If x € (0,2), then f/'(z) > 0, so f is monotone increasing.

If z = 2, then f'(2) = 0, this is another critical point.
o If x € (2,+00), then f'(x) <0, so f is monotone decreasing.

By the changing the signs of f’ we can conclude that = 0 is a minimum point
(global), while = 2 is a local maximum point.

Example 6.6 Consider the following function on the real line:
fl@)=x+sinz
Since f'(x) =1+ cosz, it is clear that function has critical points at
x=2k+ 7 k=0,4+1,42,...
However, none of them is an extremum:
z# (2k+1)m then f'(z)>0,

because cosx > —1. This means that the derivative does not change its sign.
In fact, this function is strictly monotone increasing on the entire real line.

6.3 Higher order derivatives

If a function f is differentiable in a given interval, then the correspondence
x — f'(x) is called the derivative function of f. If f’ is again differentiable at a
given point xg, then we say that f is twice differentiable at this point. Instead
of using the complicated notation (f’)'(x¢), we use the brief formula

f//(xo)

and this is called the second derivative of f at xg.
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In a completely similar way, if n is a given integer, we can define the n-the
derivative of the function f at zy, and its notation is

F ().
For instance, for the function f(z) = 1/x at any given point xo # 0 we have

(—1)™n!

and f(n) (z0) = RS

f”(l‘o) —

St o

for every integer n.

Example 6.7 Consider the function f(z) = sinz, and find its derivative
function.

, . sin(x+h) —sinz . sinxcosh+ coszsinh —sinx
N R h
h—1 in h
= sing- lim 202 +cosz - lim S
h—0 h h—0 h

In view of Example 3.12 the first limit is 0, and in view of Example 3.8 the
second limit is 1. Therefore,
f'(x) =cosz

By using the identity cosz = sin(z + 7/2) and the Chain-Rule, we have
(cosz) = cos(x +7/2) = —sinz

Therefore, the higher order derivatives of f(z) = sinz can be given in terms of
the divisibility by 4:

cosx ifn=4k+1
—sinz ifn=4k+2
—cosx ifn=4k—+3

sinz  if n is divisible by 4

F(z) =

6.4 Second order conditions

It may happen that we analyze a function, where the sign of its derivative is
not easy to determine (for instance a higher degree polynomial). In a case like
that, the second order (sufficient) condition proves to be useful.

Theorem 6.8 Let f be differentiable in an interval, and suppose that f is
twice differentiable at an interior point xq.

If f'(zg) =0 and f"(x0) > 0, then xq is a local minimum point of f.
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Proof. Indeed, by examining the different quotient we get
f'(@o + h) — f'(x0)

1 . : —
Fi(wo) = Jimy h =
= lim 7fl($0 +h) >0
h—0 h

This means that the quotient f’(x¢ + h)/h is positive for 0 < |h| < € for some
€ > 0. This implies that

o if z € (xg — &,20), then f'(z) <0,
o if x € (xg, 209 +€), then f'(z) > 0.

Making use of Theorem 6.4 we conclude that xg is really a local minimum point.

We can formulate an analogous second order sufficient condition for the case
of local naximum.

By using proof by contradiction, we get the second order necessary condition
for an extremum point.

Theorem 6.9 Assume that f is twice differentiable in an interval, and let xq
be an interior point of the interval.

o If xg is a local minimum point, then f'(xz¢) =0, and f"(x¢) > 0.
0

o If xq is a local mazimum point, then f'(xg) =0, and f"(xg) <

Example 6.10 For z > 0 consider the function

f(z)=zhz
Then f'(z) = 1+ Inx, therefore, the only critical point of f is x = 1/e. On the
other hand f”(x) = 1/z, so we have

f'fe)y=e>0,

Thus, z = 1/e is a local minimum point of f. (It is not hard to verify that this
is a global minimum point as well.)

Please observe that our theorems provide no information for a critical point
) with
f” (QC()) =0.
The reason that in this “marginal” situation anything can happen. For example,
examine the behavior of the functions

fl@)=a"  (n=3)

at the critical point g = 0. On the one hand, here f/(0) = 0 and f”(0) = 0.
On the other hand
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e if n is even, then z9 = 0 is (global) minimum point,
e if nis odd, then xg = 0 is not an extremum point (so-called saddle point).

Very similarly, if n is even, then xg = 0 is a (global) maximum point of —f.

6.5 Convex and concave functions

Definition 6.11 The function f is said to be convex on the interval [a, b], if for
any two points x7 and xs from the interval, and for any real number 0 < o <1

flazr + (1 = a)xz) < af(zr) + (1 —a)f(x2) .

The geometric meaning of this definition is that any cord to the graph (i.e.
a segment that connects two points on the graph) can nowhere be below the
graph of the function.

Concave functions are defined by the opposite inequality.

We now give a simple characterization of convexity for twice differentiable
functions.

Theorem 6.12 Assume that f is continuous on a closed interval, and twice
differentiable in the interior. The necessary and sufficient condition for the
convezity of f is:

f'(x) =0

at every interior point of the interval.
In particular, this means that for convex functions the slope of the tangent
line (i.e. the derivative) is monotone increasing. Geometrically this can be

illustrated by the fact that the graph of the function is nowhere below the
tangent line.

Example 6.13 Give a complete analysis of the function

T
fa) = 1=
First we calculate the derivative:
1— a2
/ _

By examining the sign of the derivative, we come up with the following summary:
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e f is strictly monotone decreasing on the interval (—oo, —1)

e r = —1is a (global) minimum point

e f is strictly monotone increasing on the interval (—1,1)

e z =11is a (global) maximum point

e f is strictly monotone decreasing on the interval (1, +00).

The convexity is investigated by specifying the sign of the second derivative:

N 223 — 6
f(z) = m

Obviously, the denominator is positive, so it is enough to find the sign of the
numerator:
22° — 62 = 2x(z* — 3)

By examining the factors we come up with the following summary:
e f is concave on the interval (—oo, —/3)
e f is convex on the interval (—/3,0)
e [ is concave on the interval (0,/3)

e f is convex on the interval (v/3, +00).

Please notice that we have f”(—+v/3) = f”(0) = f”(v/3) = 0, and the second
derivative changes the sign at those points. In other words those points separate
the convex and concave segments of the function. Such point are called the
points of inflection of f. At a point of inflection the tangent line intersects the
graph of the function.

Probably the most important property of convex function is that every local
minimum point is a global minimum point as well.

Theorem 6.14 Consider a twice differentiable convex function f on an in-
terval, and let xq be an interior point of the interval. If xq is a local minimum
point, then it is a global minimum point.

Proof. Indeed, on the one hand f’(z¢) = 0, on the other hand f’ is monotone
increasing. Therefore, at every interior point xg:

e if x < xg, then f'(x) <0, and hence, f(z) > f(xo),

o if > xg, then f/(x) > 0, and hence, f(x) > f(zo).
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This proves our statement.

A completely analogous theorem can be formulated for concave functions
and maximum points.

Example 6.15 Define the function f for x > 0 on the positive half line:
f(z) =azx+2Inx
where a is an unspecified parameter. For what value of a will f possess a global

maximum point at z = 67

By the necessary condition for an extremum

oy 2
f(x)—a—&—m—O

that yields z = —2/a. By the condition z = 6, we get a = —1/3. The second

derivative of f is:
1
f/l(x) = _ﬁ < 07

therefore the function is concave on the whole domain. Consequently, for the
parameter a = —1/3 the function f has a global maximum point at z = 6.
Study at home:

1. Careful review of the "Mathematical Analysis Exercises"

2. Textbook-1: Chapter 9.
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Integration

7.1 The indefinite integral

Definition 7.1 Let f be a function defined on an interval I. A differentiable
function F' defined on I is called the indefinite integral of f, or sometimes its
primitive function, if

F'(z) = f(2)
for every = € I.
It is clear that taking the indefinite integral is the reverse operation of dif-
ferentiation. It is important to note that the indefinite integral is not unique!

Indeed, if F' is the indefinite integral of a function f, then by adding a constant
C to F we again have an indefinite integral:

(F(x) +C) = F'(z) = f(x)

for every x € I.

We show that this is the only way to create other indefinite integrals.

Theorem 7.2 If F is an idefinite integral of f on the interval I, then any
indefinite integral of f can be given in the form F + C, where C' is a constant.

Proof. Indeed, if the differentiable function G is an indefinite integral of f
on the interval I, then at every point = € I we have

(F(z) = G(x))' = f(z) — f(z) =0

This means that the derivative of F — G is zero on I. By the Mean Value
Theorem we get that F' — G is constant on the interval.

53
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In view of our theorem, we use the following notation for indefinite integrals:
/f(a:)dx:F(x)—FC’
For instance, by simple differentiation we can verify
/cosxdaz =sinz 4+ C

or very similarly

o JJOH_l
/x dx:a+1—|—0 (a # —1)

where C is an arbitrary constant. If a function has an indefinite integral on an
interval, then there are infinitely many of them.

7.2 Basic integrals
The following rule can be useful for finding indefinite integrals:
Theorem 7.3 [(af(z) + Bg(x))dz = o [ f(z)dz+ B [ g(z)dx

This rule can be extended to any sums with finitely many terms.

ATTENTION: Not all functions have indefinite integrals. For example, a
function f with a point of discontinuity, where the one-sided limits exist, they
are finite, but not equal, cannot possess an indefinite integral. The following
theorem formulates a useful sufficient condition for the existence of the indefinite
integral.

Theorem 7.4 If f is continuous on the interval I, then it has an indefininite
integral.

We can easily create rules for finding indefinite integrals by reversing the dif-
ferentiation rules. By taking the opposites of differentiation rules for elementary
functions, we obtain rules for finding indefinite integrals.

In general, any formula for an indefinite integral can be verified by direct
differentiation. For example:

/sinxdx =—cosz+C

3 2
2x—1 1 2x—1
e dx = 56 +C

2 )
/(2x2—5x+8)dm=7$3—7$2+8x+6’

2x
— =In(1 2
/1+:C2dx n( —i—x)—i—C
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7.3 Initial value problems

As we have seen, a function can have infinitely many indefinite integrals (if any
exists), and they differ only in an additive constant. However, if fix a point
in the coordinate system, and looking only for a definite integral that passes
through the given point, then the solution of the problem may be unique.

Example 7.5 Find the function F' for which
F'(z) =27 and F0)=1

In this case we are looking for a specific indefinite integral
F(x) 22/6_$d1‘= —2e" "4+ C

so that F'(0) = 1. The condition implies C' = 3, and this is the only solution.

7.4 Definite integrals

In this section we briefly outline how Berhard Riemann, professor of mathemat-
ics at University of Gottingen (Germany) introduced the concept of integration
in the 19-th century. The idea is based on the two-sided approximation devel-
oped Archimedes, the ancient greek mathematician. This idea is a fundamental
element of human thinking, and this is how Archimedes determined the area of
the circle in Syracuse, using the areas of approximating polygons from inside
and outside.

Let f be a continuous function on the finite interval [a, b], and consider the
partition of the interval into n subintervals by using the points

a=xp <11 <...<Tp=20b
On every subinterval [z;_1,z)] let m) denote minimum value of f, and let

M, denote the maximum value of f. Those extreme values exist by virtue of
Weierstrass’ theorem (see Theorem 3.15). Create the sum

n
Sn= Y m(r — Tk_1)
k=1
that we call lower sum, and the sum

Sp = ZMk(Ik — Tp—1)

k=1
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that we call upper sum. The sum the areas of these rectangles approximate the
area below the graph of f from below, and from above, respectively. Check
Figures.pdf for details!

We can easily see that by inserting a new node point s, cannot decrease,
and S, cannot increase. It can be shown that if the density of the partion gets
higher then the lowest upper bound of the lower sums coincides with the highest
lower bound of the upper sums. Following Riemann’s idea, this common value
S is called the definite integral of f on the interval [a, b]. The notation is:

S/abf(ac)d:v

which means the (signed!) area below the graph of f.
ATTENTION!

The area above the x-axis comes with positive sign, the area below the z-axis
comes with negative sign, respectively.

Based on this geometric interpretation, the following properties of the defi-
nite integral are intuitively obvious.

Theorem 7.6 Let f and g be functions that have definite integrals on [a,].
Then

1. if f(z) < g(x) on the interval [a,b], then

/abf(x)dxg/abg(x)dx

2. in particular, \fab f(x)dz] < f; |f(z)| dx.

3. If f(x) < M on the interval [a,b] (M is a constant), then
b
/ F@)dz < M(b— a)

4. If f is continuous on the interval [a,b], then there exists a point T € [a, b],

for which f: f(x)dz = f(Z)(b— a).

5. By definition: [,' f(z)dx = — fab f(x)dz if a <b.

6. f: f(z)dz = fab f(z)dz + fbc f(x)dx

Create a picture, and interpret the above statements geometrically!
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7.5 Newton-Leibniz-formula

In this section we show how a definite integral can be evaluated by using the
indefinite integral (primitive function). Our main result is sometimes called the
"Fundamental Theorem of Calculus" (in the English literature).

Theorem 7.7 (Newton-Leibniz-formula) If F' is a primitive function of
the continuous function f on the finite interval [a,b], then

b
/f@Mx=ﬂw—F@

Justification (not a proof!): It is easy to see that our statement is indepen-
dent of the choice of the indefinite integral. Indeed, if G is another primitive
function of f, then

G(z) =F(z)+C

on [a,b] with a constant C' (see Theorem 7.2), and therefore,

b
/ f(z)dz = [G(2)]s = G(b) = G(a) = (F(b) +C) = (F(a) + C) = F(b) — F(a).

On the other hand, fix a point x € [a, b] and consider the integral

0= [ s

Then F(a) = 0, since the length of the path of integration is zero. It would be
enough to show that this F' is an indefinite integral of f.

In view of Theorem 7.6 for any a < < b and h # 0 with = + h € [a, ],
there exists a point T between x and x + h with the following property:

x+h
%wu+m—F@»=%L F(t)dt = 3 (@) -

Now, if we pass to the limit h — 0, then T — «, and by the continuity of f we
also have f(Z) — f(z) that is

lim = (F(z+ ) — F(x)) = F(z) = Jim f(7) = /(2)

This means that F' is really a primitive function of f. ]
It was an amazing achievment by Newton and Leibniz, and the mathematics

of their time, to find the beautiful relationship between the derivative and the
geometry of definite integrals, as it is described in our theorem.
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This discovery is so fundamental that it cannot be overestimated. First, it
triggered a very rapid developement in physics and chemistry, and somewhat
later it gave a massive boost to the evolution of sciences like biology, economics
and others. Summing up, we may say today that the theory of differentiation
and integration provides the precise scientific language and vocabulary in all
branches of sciences.

For convenience, sometimes we use the following notation:

b
[ f@yds = [F@L = F6) - Fo

As a consequence of the Newton-Leibniz-formula, we can formulate the following
statement.

Consequence 7.8 If f is continuous on an interval, then it has a primitive
function on that interval.

Proof. In view of the proof of the Newton-Leibniz-formula, we get that the
function

Flz) = / F(#)dt

is really a primitive function of f on the given interval. O

Example 7.9 Evaluate the definite integral below.
2 4 2
1 1
/ <2x3+1+2>d:ﬂ:[$+x—} =9
1 x 2 x|,

Some more examples:

w/2

sinzdr = [— cosx]g/2 =1

S~ S~

Study at home:

1. Careful review of "Mathematical Analysis Exercises"

2. Textbook-1, Chapter 10.
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Methods of integration

8.1 Integration by parts

If f and g are continuously differentiable functions on an interval I, then by the
Product-Rule we have:

/ F(@)g(z) de = f(x)g(z) - / f(@)g (z) dx

This formula is called integration by parts. For example, consider the integral

/a:e_z dx

then by using the allocation f’(x) = e~® and g(x) = z (could we do it the other
way?):

/xe_m dr = —xe " + /e_m der = —xe ™ —e "4+ C

Example 8.1 Use integration by parts in the integral

/x"lnxdm

(where n # —1). Introduce the notation f’(x) = 2™ and g(z) = Inz, then (what
do we get in the opposite way?)

l.nJrl " xn+1 anrl
"Inxdr = 1 — dr = Inzg— —=+C
/x nzxdx n+1nm /n—|—1 €T n+1nm (n+1)2+

In particular, for n = 0 we have:

/lnxdmzmlnx—x—!—C:m(lnx—1)+C

59
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8.2 Integration by parts in definite integrals

We can use integration by parts in definite integrals in the following way:

b b
/ f(@)g(x) de = [f(@)g(@)]’, - / f(2)d (@) de

For istance, by setting f'(z) = sinz and g(z) = x (would the opposite way
successful?):

s T
/ zsinzdr = [—zcosx|] +/ cosx dx
0 0
= 7w+ [sinz|j =7

This procedure is faster than first computing the indefinite integral and then
substituting the bounds. Further, it may minimize the chance of miscalculation.

Example 8.2 Sometimes we need to carry out integration by parts more times
in a row. Consider the integral
/ z2e M dx

where A\ > 0 is a given parameter. Introduce the notations f'(r) = e~** and

g(z) = 22, then
/xQe_M dx = —lee_M + l /2me‘” dx
A A

The last integral can be evaluated by a repeated integration by parts.

Attention! We stick to the notations f/'(x) = e~ and g(x) = z. In the
opposite situation we come to an absolutely useless identity. Give it a try!

1 2 2
/:rzef)‘md:z: _ 7XI267)\I o pzef/\z o Fef)\:v +C

Example 8.3 Find the definite integral below:

T
/ e” sinx dx
0

Apply the setting f'(z) = e” and g(x) = sinz, the by two consecutive integra-
tions by parts:

T T
/ e’sinxdr = [e®sinx]] — / e’ coszdx
0 0

T
= —[ezcosx]g—/ e’ sinx dx
0
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Isolate the original integral on the laft-hand side:
2/ e’ sinx dr = —[e” cos x|
0

which means - )
/ e’sinzdr = =(e" + 1)
0 2

8.3 Integration by substitution

From the diffentiation of a composition of functions (i.e. the Chain-Rule) we
derive the following identity:

[ rowngvde= [ 1wz

where z = ¢(t) is a continuously differentiable function on an interval. This
formula is called the integration by substitution.

Example 8.4 Calculate the following indefinite integral:
/57:3\/2 + ¢4 dt

Observe that by introducing the substitution 2 = g(t) = t*, the integral can be
rewritten in this form:

2
/5t3\/2+t4dt:%/\/2+xdazzg-§(2+x)3/2+0

By performing the backsubstitution:

/51&3\/2 +thdt = 2(2 +tH32 4 ¢

Example 8.5 Consider an example, where the converse approach is useful:
/ e*/1 + e® dx
Introduce the substitution x = g(t) = Int, then ¢'(¢) = 1/t, and we obtain:
/exmdx _ /wm% it = %(1 24O
By the backsubstitution ¢ = e” we get:

2 .
/ex\/lJre“dz: §(1+ez)3/2+0
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8.4 Substitution in definite integrals
When substitution is applied in definite integrals, instead of backsubstitution,

it is much more efficient to change the bounds of the integral according the
substitution:

b g(b)
/ Fla(t)g'(t) dt = / f(z) da
a g(a)

Example 8.6 In the example below we use the setting x = g(t) = cost, then
g'(t) = —sint, and

/2 sin2t /2 2gintcost
——dt = ———dt
o Ll+cos?t 0 1+ cos?t

0 1
2 2
_ _/ de:/ 2
1 1422 o 1+ a2

= [In(1 + 2]} =In2

Example 8.7 Apply this rule to evaluate the following celebrated integral:

1
/ V1—2a2dx
0

Introduce the substitution z = g(¢) = sint, then ¢’(¢) = cost and (please observe
the change of the bounds of the integrall):

1 w/2
/ V1—22dr = / cos? tdt
0 0
1

1 /2
= f/ (1+cos2t)dt={t+
0

2 =

sin 2t /2 s
2 2 4

0

The geometric interpretation of this example is as follows. We determined the
area of the first qudrant of the unit circle with center at the origin!

8.5 Linear differential equations

By a differential equation we mean an equation in which the unknown function
and its derivative appear. Several problems and models in micro and macroe-
conomics lead to such equations. A typical equation like that is the linear
differential equation.
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Let a and b are given real numbers, and we are looking for the unknown
differentiable function y for which

y = ay+b (8.1)
y(0) = wo

where yo is an "a priori" given real number.

The equality y(0) = yo is called the initial condition. We say that the
differentiable function y is a solution to the above problem, if for any ¢ € R we
have y/(t) = ay(t) + b, moreover y(0) = yo. The question is, how to find the
solution of this problem?

Let us suppose that y is a solution. Multiply both sides of the equation by
the expression e~%*, then after rearranging the terms, we get

y/(t>€—at _ ay(t)e—at — be—at

for every real number t. valos szamra. Observe that on the left-hand side we
have precisely the derivative of the product y(t)e~%. Therefore, by integrating
both sides from 0 to ¢-ig (and changing the variable of the integration from ¢ to

s)
| @ —ape ) s = e, = [ beeras

By plugging in the bounds we receive
t
y(t)e " —y(0) = / be~ % ds.
0

Rearranging and multiplying both sides by the expression e¢** we can formulate
our result in the following theorem.

Theorem 8.8 (Cauchy-formula) The solution to problem (8.1) is given by

t
y(t) = e (yo +/ be™ ds)
0

on the entire real line.

Recall that without prescribing the initial condition y(0) = yo the linear
differential equation (8.1) would possess infinitely many solutions.

Example 8.9 For instance, if we are looking for the solution of the linear
differential equation

Yy = 2y+5
y(0) = 3
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then by the Cauchy-formula we conclude that

¢

) t 11 )
t) = 2t 3 5—28d _ L2t 3= —2s — 2t Y
y(t)=e <+/0 e s) e 2[6 }0 5e 5

for each t € R.
Verify that this is the correct solution, by direct substitution!

Study at home:

1. Careful review of "Mathematical Analysis Exercises"

2. Textbook-1, Sections 11.1 and 11.2.



Chapter 9

Extension of integration

9.1 Improper integrals

Assume that f is continuous on an infinite interval [a,+00). Then for every
b > a the integral f: f(z) dz exists.

Definition 9.1 We say that the improper integral of f exists (or convergent)

on the infinite interval [a,00), if the limit limy o0 [0 f(2)da exists and it is
finite. The value of the improper integral is defined by

[e%S) b
/ f(@)dz = lim f(x)dx
a b—oo [,
If the limit above is not finite, or does not exist, then we say that the improper

integral does not exist (or not convergent).
We define the improper integral

/; f(z)dx

in a completely analogous way.
Example 9.2 Investigate the improper integral
o0
1
/ —dx
1 x

’1
/ —dr = [Inz]} =Inb
1

X

By the definition

65



66 CHAPTER 9. EXTENSION OF INTEGRATION

Passing to the limit b — oo we see that the limit of Inb is not finite, therefore
this improper integral is not convergent.

However, the improper integral
[ee]
1
1 X

b b
1 1
lim/ —2dx: lim {] =1
b—o0 1 T b—o0 x 1

and the value of the improper integral is 1.

does exist, since

By applying the same argument, we see that the improper integral

/lwldle (9.1)

since the limit at the upper bound is zero.

Example 9.3 Consider the following important example (density function of
the exponential distribution):
oo
/ e M dx
0

where A > 0 is a given constant. Then for any b > 0 we have:
b b
/ e A dg = [—e*)‘ﬂo =1—e
0

Consequently
/ Ae M dr = lim (1—e ) =1
0

b—o0

for any given constant A > 0.

9.2 Improper integrals on the real line

Definition 9.4 We say that improper integral of f on the real line exists, if
the integrals

/_OOo f(z)dz and /000 f(x)dx
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are convergent. Then the value of ffooo f(x)dz is given by the sum of the two
integrals.

Example 9.5 For instance, the improper integral

< 2
—d
/,oo1+a:2 ’

does not exist, although for any given b > 0 we get

b
2
/ = _dr =0
,bl—i—xz

because the integrand is an odd function. However,

b
2x
—= _dr =1In(1+b?
/ol—I—xQx a(l+57)

and its limit is 400, when b — oo and according to the definition the integral
is not convergent. The same can be said about the integral on (—oo,0].

Example 9.6 Evaluate the following improper integral:

o0 2
I:/ ze” " dx
0

where ¢ > 0 is a given constant. Here for every b > 0 we obtain

b 2 1 2 b
/ e  “ dx = [ec"” ]
0 2¢ 0

This implies that 7 = 1/2¢. On the other hand, the integrand is an odd function,

thus, .
/ xefm"z dr =0.
— 00

Note that it was important to verify that the integral is convergent!

Example 9.7 (Gauss-integral) The following integral is important in prob-

ability theory:
I= / e~ da

(density function of the normal distribution). The evaluation of this improper
integral needs some sophisticated calculations, we skip the details here. The
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reason why this problem is hard is that the primitive function cannot be given
explicitly.

ATTENTION! That does not mean there is no primitive function! The
integrand is continuous, which implies that the primitive function exists (see
the Chapter 7). The main difficulty is that this primitive function cannot be
expressed in terms of elementary functions.

oocf‘"’”2 dx = ﬁ
O 2

It can be shown that

and therefore I = /7, since the integrand is an even function.
By applying the substitution 2 = tv/2, we also see that

1 o 2
ST dr=1 9.2
\V/ 2 /7006 v ( )

This equality will play an important role in probability theory.

9.3 Integration by parts in improper integrals
In the upcoming examples we use integration by parts in improper integrals.

For simplicity, instead of passing to the limit b — +o00, we briefly indicate the
upper bound +oo. (But we should know what it means!)

Example 9.8 Suppose that A is a positive constant, and evaluate the improper

integral
o0
/ A\ze T dx
0

By setting f/(z) = Ae™** and g(x) = x (this way we make sure that the
multiplier = will disappear in the second integral), we get

/ e Mdy = [—mef)‘x];o —/ —e M dg
0 0
67)\&: o0 B l
Ao N

Observe that the expression within the brackets is zero! It is a consequence of
L’Hopital’s Rule.

Example 9.9 Suppose again that A is a positive constant, and now evaluate

the improper integral
o]
/ \ze ™ dx
0
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Applying again the setting f'(z) = Ae™** and g(z) = 22 (this way we make sure
that the degree of the multiplier 22 decreases), by two consecutive integrations
by parts (with the same setting) we obtain

/ Ale Mdr = [—x2ef>‘z};of/ —2ze M dy
0 0

_ {2:17@/\1]00 B /°° 723*)@ -
A 0 0 A

-z
= |:—2€ 3 :| = 32
ER B

In this example we needed two integrations by parts in a row to eliminate the
multiplier z2. In view of the L’'Hopital-Rule, the expressions inside the brackets
are zero.

Example 9.10 Use integration by parts to evaluate the improper integral

o0 2
/ 22e /2 dx
— 00

By allocating the roles among the factors in a smart way, we conclude:

o0 o o -
/ (—x) - (—xe‘xzm) dx = [—me‘xQ/Q} —i—/_ooe 24y = or

— 00 —0o0

where we relied on formula (9.2). Indeed, making use of L’Hopital’s Rule, we
see that both limits of the expression within the brackets are zero, hence

/ 22e7% /2 4y = /21 . (9.3)

9.4 Harmonic series revisited

As we have seen in Chapter 2, for a given exponent « > 0 the infinite series

> kia (9.4)
k=1

is divergent if o < 1, and it is convergent if a > 2. However, we were unable
to find the answer when 1 < o < 2. Now we give a complete solution by using
improper integrals. Consider n-th partial sum of the series

"1
k=1
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and sketch the graph of the function

flo) = -

l.a

on the positive part of the real line. Take the values of the functions at the
integers 1,...,n, then by examining the graph we can easily see that

"1
S, <1+ / —dx
1z
since the function f is strictly monotone decreasing.
ATTENTION! Check Figures.pdf for the details!

On the other hand f is positive, and for a > 1 its improper integral on the
interval [1, 00) is convergent, see the equality (9.1). Therefore

"1 1 1 o
Sp <1 —dr <1 —dr=1 = .
+/1 T« v +/1 e o +oz—1 a—1

We conclude that S, is bounded from above, and it is clearly strictly monotone
increasing, hence it is convergent. We summarize this result in the following
theorem.

Theorem 9.11  The infinite series (9.4) is convergent if and only if « > 1,

and in this case
oo
> e <
ke a—1
k=1

Study at home

1. Careful review of "Mathematical Analysis Exercises"

2. Textbook-1, Sections 11.3 and 11.4.



Chapter 10

Power series

10.1 Sum of power series

If -1 <z < 1is a given real number, then the geometric series

1i$:ixk.

k=0

is convergent. It is an interesting question if a given function f can be given in
the form

fl) =) apa® (10.1)
k=0

with appropriate coefficients a;. In this case we say that f can be expanded in
a power series.

Definition 10.1 The series on the right-hand side of the equality (10.1) is
called a power series, the function f on the left-hand side is called the sum of
the power series.

In this chapter we examine two interesting questions.

1. For what values x is the power series convergent, and what is its sum f.

2. Conversely, if a function f is given, how can we find the power series whose
sum is precisely f (if possible).

A power series is obviously convergent for x = 0 and its sum is ag. The set

of all values of x for which the power series is convergent is called the set of
convergence.

71
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10.2 Radius of convergence

The set of convergence of a power series is always an interval that is symmetric
about the origin. This fact is formulated in the following theorem.

Theorem 10.2 (Cauchy-Hadamard-theorem) For the power series (10.1)
there exists a nonnegative number R (maybe R = 0 or infinity) so that the series
1s convergent in the open interval —R < x < R, and it is divergent outside the
closed interval [—R, R).

Proof. We just restrict our attention to the case when the limit

Af41
ag

lim

k—o0

exists. Introduce the notation:

I/r 0<r<4o0
R = +oo ifr=0
0 ifr=o00

In view of the Quotient Test the series is convergent, if
gyt

lim
apxk

k—o0

<1

which exactly means that |z| < R.

A completely analogous argument shows that the series is divergent when
|z| > R. O

ATTENTION!

This theorem says nothing about the boundary of the intervall At |z| =
R the series may or may not be convergent. This cannot be decided by our
theorem, further analysis is needed.

Definition 10.3 The number R above is called the radius of convergence of
the power series.

Example 10.4 Consider the power series

k

OO{,C
2

Here we have

. Ak+41 k!
lim

_— I = 1. — =
k—oo  ay hovoo (k+1)! hovoo k4 1
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and hence R = oco. This means that the power series is convergent on the whole
real line.

Another example is the power series

>
k
k=1
Then we get
. Q41 . k
1 = — =1
Fyos ag hos k+1

and hence R = 1. We conclude that the series is convergent in the open interval
(—1,1), and it is divergent outside the closed interval [—1,1].

On the other hand, we see that for x = 1 we obtain the divergent harmonic
series, and further for x = —1 we get a convergent series with alternating signs,
see Example 2.12. Thus, the interval of convergence of this power series is the

interval
[* 1’ 1)

closed from the left and open from the right. Please observe that on the bound-
ary anything can happen!

10.3 Differentiability of power series

Consider a power series whose radius of convergence is R > 0 and its sum
function is f that is
[o ]
k
Zakx = f(x)
k=0

for every —R < x < R.

Theorem 10.5 The sum f of the power series is differentiable, in particular
o0
f(z) = Z kapah 1
k=1
in the open interval (—R, R).

We do not prove this theorem (it is technical), just note that it is based on
the so-called "uniform convergence" principle. Some consequences however, can
easily be derived from this statement.

e The derivative of the sum is obtained from differentiating the power series

term by term. This is not obvious, since the sum rule (in general) is not
true for infinitely many terms. FIND COUNTEREXAMPLES!
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e Observe that the radius of convergence of the derivative power series is
still R. VERIFY!

e As we see that f’ is the sum of a power series in the same interval, by

repeated applications of the theorem, we deduce that f is infinitely many
times differentiable in the open interval (—R, R).

Example 10.6 Consider the geometric series in the open interval —1 < z < 1

o0
>t =

k=0

Note that the first term is 1, whose derivative is zero. Making use of our theorem
o0
1
Sket o L
)
— (1—x)

for every —1 < x < 1.

Example 10.7 Find the function f that is given by the following power series:
o0
=S
k=1

A simple calculation shows that the radius of convergence is R = 1. On the one
hand f(0) = 0, on the other hand, by the differentiability of the power series

[e.9] oo 1
Zk Z 1+z

k=1 k=1

for each —1 < z < 1. This implies
+/$ Ldt = [In(1+t)]; =In(1l +z)
o 1+t o

in the open interval (—1,1). Moreover, by Example 2.12 the original series is
convergent at © = 1, which leads to the celebrated identity

T R
2T3 gy T

However, the series is divergent at x = —1.
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10.4 Finding the coefficients

Suppose that a function f can be given as the sum of a power series in the interval
of convergence. Then necessarily f is infinitely many times differentiable in the
interval. How could we determine the coefficients of the power series?

By succesively taking the derivatives of both sides of equality (10.1), the
coefficients aj can be computed step by step. Indeed, observe that

f(0) = a0, f'(0) = a1, [f(0) = 2as,
and in general, for any given index k we get:
FE0) = k! - ax

If we substitute these expressions for a; in the power series, then we have

> £(k)
o) = 32120
k=0

k!

This form is called the Taylor-series (or Taylor expansion) of f.

10.5 Taylor-series of the exponential function

In this section we consider the exponential function f(x) = e®. If this function
is the sum of a power series, then the coefficients can only be

1
TR

for every k. Indeed, any derivative of e” is e, which takes the value 1 at = = 0.
Therefore, the Taylor-series associated with the function e” is:

2

and we have seen that this series is convergent on the entire real line.

ag

The reason why we did not write equality is that it is not yet clear at the
moment that the sum of this series is really e®.

To overcome this difficulty, consider the function

oo

2k
f(fU):ZH

k=0

on the real line, which is yet to be determined. Clearly f(0) = 1. On the other
hand, in view of the differentiability theorem:

. k=1 X k-1
f(x):Zk %l :Zm:f@)
k=1 k=1
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for every —oo < & < oo. This is a simple linear differential equation for the
unknown f, whose only solution is

flz) =€”
on the real line. As a consequence, we deduce the celebrated identity

RN 1

by substituting x = 1.

Study at home

1. Careful review of "Mathematical Analysis Exercises"

2. Textbook-1, Section 6.5.



Chapter 11

Functions of two variables

11.1 Partial derivatives

Consider a function f : R? — R of two variables. Fix the coordinate y = b and
examine the function

x — f(x,b)
of only one variable. Assume that this function is differentiable at a point a,

and determine its derivative.

Definition 11.1 The derivative above is called the partial derivative of the
function f with respect to the variable x at the point (a,b). We denote it by

0
oL (0.0) = fila,d)

Sometimes the notation f7(a,b) is also used.

Example 11.2 Consider for instance the function f(z,y) = (x + 2y)e®+3v~1
and find its partial derivative with respect to x at the point (1,1).

Then f(z,1) = (z + 2)e**?, whose derivative at any z is
fila,1) = "2 4 (2 +2)e""? = (2 + 3)e™?

Substituting = 1 we obtain f{(1,1) = 4e3.

Example 11.3 Principally, we could also calculate the partial derivative of
the function f with respect to the variable x with an arbitrarily selected and

7
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fixed y, and substitute the values = a and y = b. This is of course good, but
not always convenient, as shown in the following example. Take

flz,y) = Va2 +y2 +5- e 27 - cos(y + 7/2)

and find the partial derivative with respect to x at the point (1,0). Then the
above way would give you the right answer, but it requires a long calculation
and very time consuming. However, if we follow the definition, then we see that

f(z,0)=0

for every x, and therefore f(1,0) = 0.

The correspondence

0
xH%(x), z€eR

is called the partial derivative function of f with respect to the variable x.

11.2 Tangent planes

Partial derivatives (similarly to the one variable case) can be given a nice geo-
metric interpretation. Consider a function f : R? — R with two variables. The
graph of this function is a surface in the three dimensional space. Pick a point

P(a,b, f(a,b))

on the surface. If this surface is intersected by the plane y = b passing through
the point P, then we get a curve lying on the surface. The slope of the tangent
line to this curve at P is exactly the partial derivative f](a,b). We can give an
analogous interpretation for the slope of the tangent line that lies in the plane
x = a. The plane spanned by the two tangent lines has the following normal
vector (perpendicular):

v = (f{(a’b)a fé(avb)’ _1)

By using the notation ¢ = f(a, b) the equation of this plane is

fila,b)(z — a) + f3(a,b)(y — b) = (2 — ) = 0.

This plane is called the tangent plane to the surface at the point P.

Example 11.4 Find the value of the parameter p if the tangent plane to the

function
flz,y) =pry/a? +y24+1-7

at the point a =2, b =2, ¢ = f(2,2) passes through the point Q(2,—1,6).
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Simple substitution shows that f(2,2) = 6p — 7, which means that we are
looking for the equation of the tangent plane at the point P(2,2,6p — 7). Cal-
culate the partial derivatives:

of 13 of 4

890(7 ) 3P and 8y(’ ) 3P

Hence, the equation of the tangent plane at P is:

13 4
Ep(x—2)+§p(y—2)—(z—6p+7):0.

If the tangent plane passes through the point @), then its coordinates satisfy the
equation of the plane. This gives us the following equation for the unknown
parameter p:

—4p =13 — 6p.

The only solution is p = 13/2.

11.3 Chain Rule

Consider now the functions f : R? — R and ¢ : R — R? where for every t € R
we use the notation

g(t) = (91(t), g2(1))

Suppose that the range of ¢ lies in the domain of f. Then we may examine the
composition
fog:R—R

We want to give a condition on the differentiability of f o g.

Theorem 11.5 (Chain Rule) If both g1 and g2 are differentiable at t, and the
partial derivative functions of f are continuous at g(t), then fog is differentiable

at t, and
(Fo9)(6) = 5L (600 + 5 (a0)sst0)

Our theorem is very similar to the Chain Rule with one variable (see Chapter
4). Its proof (skipped) would follow the same ideas, but technically a bit more
involved.

Example 11.6 Take for instance f(z,y) = 22 — zy + y?, and

x = gi(t) = cost y=go(t) =sint
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and consider the composition function F'(t) = (f o g)(t). Making use of the
Chain Rule

F(t) = (fog)(t)= %(g(t))gi(t) +=-(9(1))g2 (1)

= (2cost —sint)(—sint) + (— cost + 2sint) cost = sin’t — cos® ¢
(

for every t € R.

Example 11.7 Consider the function f : R?> — R and suppose that its partial
derivatives exist and are continuous. Take the vector v = (vi,v2) € R? in the
plane, and let a point P(a,b) € R? be given. Then the equation of the straight
line in the direction v and passing through the point P(a,b) is:

g(t) = (a,b) + tv = (a + tvy, b+ tvg).

Using these notations we have ¢ (t) = v1, ¢g5(t) = va. Further, take the compo-
sition function

F(t) = f((a,b) +tv)
then by the Chain Rule, its derivative is given by:

i = 9F of
F'(t) = Oz ((a,b) + tv)vy + ay ((a,b) + tv)vg
In particular for ¢t = 0 we obtain:
oy~ O o1
F'(0) = O (a,b)vr + By (a,b)ve

11.4 Local extrema

The absolute value (or the distance from the origin) of a vector v = (x,y) in
the two dimensional plane is defined by:

loll = (2% + )"/

that is called the norm of the vector v.

Definition 11.8 In the plane R? the set

B={veR?: || <1}
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is called the unit disk (with center at the origin and radius equals 1). Conse-
quently, a disk with center at the point (a,b) € R? and radius r > 0 is given
by

(a,b) +rB={veR?: ||v— (a,b)|| <7}

(i.e. the set of points, whose distance from the center is at most ).

Consider a function f : R? — R. We say that a point P(a,b) in the domain
is a local minimum point of f, if there exists a € > 0 such that

f(z,y) > fla,b)
for all points (x,y) in the domain of f, where (z,y) € (a,b) + €B, that is

H(x,y) - (a,b)H <e.

The local maximum is defined analogously. For global minimum or maximum
the inequality must hold on the entire domain of f.

11.5 First order necessary condition

In this section we suppose that partial derivatives of the function f : R? — R
exist and are continuous.

Theorem 11.9  If the point (a,b) € R? is a local minimum point of f, then
fi(a,b) =0 and f3(a,b) = 0.

Proof. Take a non zero vector v € R" arbitrarily, and consider the compo-
sition function

F(t) = f((a,b) + tv).

In vew of our assumption the function F' has a local minimum at t = 0. On the
other hand, F' is differentiable, namely

F'(t) = %((a, b) + tv)vy + g—;((a, b) + tv)vg

Applying Theorem 5.7 we get F’(0) = 0 for every vector v, in other words

of of
gz (@ D)+ 5 (@ b))va =0

for all real numbers v; and vo. This is only possible if

of _ of _
Grl@b) =0 and  Gr((a) =0
and this is exactly that we wanted to prove. O

Analogous theorem applies for the case of local maximum.
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This theorem tells us that local extrema can only be at points where both
partial derivatives are zero. In other words, local extrema can be only be found
in the solution set of the system of equations with both partial derivatives being
zero. This is however, just a necessary condition (just like in the one-variable
case), and by no means sufficient! For example, in the case of the function

flz,y) = 2%y?

we have the necessary condition fi(z,y) = fi(z,y) = 0. A solution to this
system is (x,y) = (0,0), and at this point

f(0,0)=0

But this is neither a minimum nor a maximum. It is easy to see that the
function has both positive and negative values in any disk around the origin
(with whatever positive radius). Thus, the origin cannot be a local extreme
point.

Example 11.10 Consider the function

1 1 axy
f(ﬂf,y)*5+§+§

on the plane, where z # 0 and y # 0, and try to find its local extreme points.
Find the zeros of the partial derivatives!

af 1

_ Y _
or m2+8 0
af 1 =z
- = —— 4+ —-=0
Oy y2+8

The only solution to the simultaneous equations is
r=2 and y=2,

therefore f can only have a local extremum (minimum or maximum) at this
point.

A comprehensive method for deciding whether or not a critical point is a
local extremum will be discussed in the Linear Algebra course (third semester,
sophomore year). We note here that P(2,2) is in fact a local minimum point of
f (see the "Mathematical Analysis Exercises" for more details).

Study at home

1. Careful review of "Mathematical Analysis Exercises"

2. Textbook-1, Sections 15.3, 15.4, 15.6, 16.1 and 16.2.



Chapter 12

Constrained extrema

12.1 Implicit functions

A problem often encountered in microeconomics is the following. If an equation
F(z,y)=0

is given, can we uniquely express the variable y from the equation as a function
of 27 In other words: can we find a unique function y = g(x) such that the
identity

F(z,g(x)) =0
holds at every point x?

Such a function does not necessarily exist. For example, in the case of the
equation
Fla,y) =2 +y°~1=0

(equation of the unit circle) the variable y cannot be expressed uniquely as a
function of z. Geometrically this means that the set of points on the plane that
satisfy the equation F(z,y) = 0 cannot be the graph of a function. The reason
for this is that some vertical lines (parallel to the y-axis) intersect this curve
twice.

It may even happen that the variable y cannot be expressed from the equa-
tion by algebraic manipulations. Such an example is the equation

F(z,y) =" —2cosy +1=0

It is easy to see that the point (z,y) = (0,0) satisfies the equation, but the
variable y cannot be isolated on one side.

We also raise the following question. If F' is differentiable, then can we
express the variable y from the equation as a differentiable function of 7 This
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question is answered by the following theorem.

Theorem 12.1 (Implicit function theorem) Assume that the at the point
(z0,y0) we have

F(zg,y0) =0

moreover the partial derivatives of F' are continuous in a mneighborhood of this
point, and

Fy(20,y0) # 0

Then there exists a unique continuously differentiable function g in a neighbor-
hood of the point xo such that

* g(xo) = yo
o F(x,g(x)) =0 at every point =

o §'(x) = —Fi(z,9(x))/F5(z,9(x))

We point out that from the continuity of the partial derivatives we get that
Fj(z,g(x)) # 0 in a neighborhood of the point .

The geometric interpretation of our theorem is that if the tangent line to the
planar curve with equation F(z,y) = 0 at the point (z¢,yo) is not parallel to
the y-axis (i.e. "the curve cannot turn back"), then y can be expressed (locally)
as a differentiable function of .

Example 12.2 Consider the implicit equation
Flz,y)=e""V+z+y—1=0
The point (0,0) satisfies the equation. On the other hand, at this point
F3(0,0) =2

Hence, F fulfills the conditions of the Implicit function theorem: there exist a
unique differentiable function y = g(x) with

g'(x) = —Fi(z,g(x))/Fx,g9(z))

1
= (eTtg(@) - _
o 1 ("9 4 1) = -1

at every point z. Since g(0) = 0, this implies
g(x) = —x

and this is the only solution.
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Example 12.3 A slightly more complicated example is
F(z,y) ="t —2cosy +1=0
The point (0,0) satisfies the equation. On the other hand, at this point
F3(0,0) =1

and hence, the conditions of the Implicit function theorem are fulfilled. We
conclude that the equation uniquely determines a differentiable function g so
that F(z,g(z)) = 0 at every z. However, this function cannot be expressed
explicitly by using algebraic manipulations.

12.2 Constrained minima

Consider the functions f and F that are both R? — R and suppose that their
partial derivatives are continuous. By a constrained minimum problem we mean
the following problem:

f(z,y) — min (12.1)

where c¢ is a given real constant. In other words, we look for the minimum (or
sometimes maximum) of f on the set

H={(x,y) e R*: F(z,y) = c}
This equality is called the constraint.

Definition 12.4 We say that the point (zo,y0) € H is the solution of the
constrained minimization problem (12.1) if

f(zo,90) < f(z,y)

for every (z,y) € H esetén. An analogous definition applies for maximum
problems.

Example 12.5 The example below illustrates that for constrained minimiza-
tion problems the usual necessary conditions for extrema do not work. Consider
the constrained minimization problem

fla,y)=2>+2y, Fr,y)=x+y=0 ie. ¢=0

From the constraint x+y = 0 we get y = —x, and consequently f(z,y) = 2% —2x
on the set H. This function achieves its minimum at the point x = 1 and in H
this necessarily means y = —1. Thus, the constrained minimum is at the point

(w0, 90) = (1,—1)
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However, at this point none of the equalities

of of
Ox T 9y
is true. Verify this!

This example also exhibits that a constrained extremum problem can be
transformed into a non-constrained extremum problem by expressing the vari-
able y as a function of x from the constraint F(x,y) = ¢. In more complicated
problems this may not be possible by algebraic manipulations. This is the point
where we need the Implicit function theorem.

12.3 Lagrange multipliers

Consider the constrained minimization problem (12.1). By using the Implicit
function theorem we make sure that the variable y can be expressed from the
constraint F'(z,y) = ¢, and that way we can solve the problem. This procedure
is described below.

Definition 12.6 The Lagrange-function (or Lagrangian) of the problem (12.1)
is defined by

E(x’yv /\) = f(x’y) - )\(F(I,y) - C)

A is an arbitrary real number.

Theorem 12.7 (Lagrange-method) Let us suppose that (zo,yo) is the so-
lution of the problem (12.1), and assume that the partial derivatives of f and F
are continuous in a neighborhood of this point. If

Fy(0,90) # 0, (12.2)
there exists a unique real number \ such that

oL oL
%(xo,yo,A)=07 and a*y(ﬂcoyyoﬂ):o

Proof. In view of (12.2) the conditions of the Implicit function theorem are
fulfilled. Thus, there exists a unique continuously differentiable function g with

e g(20) = Yo, and

e F(z,9(z)) = ¢ in a neighborhood of z(, furthermore
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e g'(w0) = —F{(20,Yy0)/F5(0,Y0)-

If (zo,yo) is the solution of problem (12.1), then the function  — f(z, g(x))
achieves its minimum at x(, therefore, its derivative at this point is zero. Ap-
plying the Chain Rule, the derivative can be given in this form:

f3(@o,y
Fi(0.90) + F3(w0. 90)g'(x0) = Fi(zo.90) — L) F (g y) = 0.
F3(x0,90)
Introduce the notation: ,
5 = f2(@0,0)
F3(20,90)
Using this notation, the above derivative can be rewritten:
oL
%(x07y07 )‘) = f{(ffmyo) - )\Fl/(‘r(hyo) =0.
The second equality of the theorem is trivial by simply substituting A. Indeed:
oL , ,
aiy(x07y0a )‘) = f2(3307y0) - A}7‘2(3307:%3) =0.0

Our theorem could be formulated analogously for the case of maximum.

12.4 Solving the constrained minimization prob-
lem

The procedure of solving the constrained minimization problem (12.1) is as
follows.

1. Find the Lagrange-function of the problem.

2. Find the partial derivatives with respect to x and y, and make them equal
Z€ro.

3. Take into account that F(zq,y0) = c.

4. Solve the system of three equations for z, y and A.

The point (xg,yo) obtained that way satisfies the necessary condition for an
extremum. The solution A is called the Lagrange multiplier associated with the
problem.

Example 12.8 Now solve the constrained minimization problem in Example
12.5 by using the Lagrange-method. The Lagrange-function of the problem is:

L(z,y,\) =224+ 2y — Nz +y).
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The system of equations is of the form:

L
%(l‘o,gjo,A) = 2.’1?0 —A=0
oL
aiy(-r07y07)‘) = 2-A=0
oL
7(1;072/07)‘) = 330"’90 =0
o\

The only solution to this system is A = 2, zg = 1 and yg = —1.

Example 12.9 The following type of problem frequently appears in microe-
conomics. Find the constrained maximum of consumer demand:

z*y?  — max (12.3)
pr+y = m

where «, 8, p and m are given positive real numbers. In this problem
fley) =2y and F(z,y) =pz+y,
Therefore, the Lagrange-function of the problem is:
L(z,y,\) = 2%Y® — Xpx +y —m).

The system of equation that comes from the Lagrange-method:

oLc )
%(-'IfD)yOa)‘) = amg 1y§_)\p20
oL _
c(Ty(xo’yO’)\) = B-afyl Tt =x=0
oL

ﬁ(ﬂco,yo,)\) = pro+yo—m=0.

This system admits the following single solution:

prg = ——m and =——m
n )
0 3 Yo 3

The Lagrange multiplier A can be then calculated from the second equation.

Study at home

1. Careful review of "Mathematical Analysis Exercises"

2. Textbook-1, Sections 16.3, 18.1, 18.2, 18.3, 18.4, 18.5 and 18.6.
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Chapter 13

Probability

13.1 Experiments

In the sequel we deal with experiments that have chance outcomes. In other
words, the experiments have outcomes that cannot be predicted.

1.

2
3
4.
)

Toss a playing die and check the number that comes out.

. Toss a pair of dice.

. Toss a die, then flip a coin as many times as the number on the die.

Keep tossing a die until 6 comes out for the first time.

. Pick a point randomly on the unit disc (with radius 1).

More complicated examples:

The number of cars that pass an intersection between 10 am and 11 am.
The number of calls received by a call center between 8 am and 9 am.
The length of time period between two successive calls

The price of a stock at the stock exchange at closing time.

The waiting time at a customer service desk.

13.2 The sample space

Definition 13.1 Let Q denote the set of all possible outcomes in an exper-
iment. The set Q is called the sample space associated with the experiment.
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Specify the sample spaces that are associated with the previous experiments.
Then in the same order:

1. ©={1,2,3,4,5,6}
2. @={(1,1),(1,2),(2,1),(1,3),...,(6,6)}

3. O ={1H,1T,2HH,2HT,2TH,2TT, ...} (Question: how many elements
are in the sample space?)

4. Q consists of all finite sequences whose last digit is 6, and all previous
digits are any of the numbers 1,2,3,4,5.

5. Q= {(z,y) e R?: 2% +¢y2 < 1}
13.3 Events

Definition 13.2 The subsets of the sample space are called events.

Take some examples in the sample spaces above.

1. Let A denote the event that the outcome is even. Then A = {2,4,6}.

2. Let A denote the event that the sum of the two numbers is 7. Then
A= {(17 6)7 (67 1)7 (21 5)» (57 Q)a (37 4)7 (43 3)}

3. Let A denote the event that we have no Tail (all of them are Head). Then
A={1H,2HH,3HHH,AHHHH,5HHHHH,6HHHHHH}.

4. Let A denote the event that we needed at most two tosses. Then A =
{6, 16, 26, 36,46, 56}.

5. Let A denote the event that the distance of the point from the center is
less than 1/2. Then A = {(z,y) : 22 + y* < 1/4}.

13.4 Operations with events

We say that the event A C ) occurs, if the experiment results in an outcome
w € 2 such that w € A.

The impossible event has no elements, notation: () (empty set). The certain
event is: Q (the whole sample space).

1. AN B occurs if and only if both A and B occur. We say that A and B
are mutually exclusive, if AN B = (.
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2. AU B occurs if and only if either A or B occurs (or both).

3. A (the complement of A) occurs if and only if A does not occur.

We say that A implies B (or B is a consequence of A), if A C B.

Theorem 13.3 (De Morgan Rules)

1. AUB=ANB

2. ANB=AUB
These identities hold true for an arbitrary number of events as well.

Proof. We demonstrate the first identity. Let z € AU B be selected arbi-
trarily. Then
r€AUB=>2¢AUB=>cs¢Aandr¢gB=ccAandzcB=2€ANB

This proves that AU B C AN B. The opposite direction (and hence the equal-
ity) follows from the fact that each implication can be reversed (i.e. they are
equivalences). The second identity can be verified in a completely analogous
way. [

When we carry out an experiment, some possible outcomes may not be
observable. For instance, if we toss a pair of completely identical (indistinguish-
able) dice, we cannot decide whether the outcome is (1,2) or (2,1). We can
only claim that the event {(1,2),(2,1)} occured.

Definition 13.4 Let A denote the collection of observable events. We assume
that they possess the following properties.

e If Ac A then A€ Aand Q € A.
° IfAl,AQ,...GA,thenAluAQU...E.A.

Proposition 13.5 If A and B are observable, then so is AN B.

Proof. Indeed, if A and B are observable, then

ANB=AUBe A

in view of the De Morgan Rules. O

By the De Morgan Rules, this proposition remains true for any countable
number of events.

Definition 13.6 In the following, by an experiment we mean the couple

K = (2, A).
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13.5 Probability space

Suppose that we perform an experiment IC n times in a row, and every time we
observe whether or not a given event A € A occurs. If A occurs k,, times out of
n trials, then the relative frequency of A is:

K
n

Experience shows that by raising n, the relative frequency exhibits a dump-
ing oscillation around a specific number. This number can be regarded as the
probability of A.

Instead of using this experimental approach, below we develop an axiomatic
introduction of probability. From the axioms we can derive the above experi-
mental fact.

Definition 13.7 (Axioms of Probability) Consider an experiment K =
(©,A). By the probability we mean a function
P:A—10,1]

that satisfies the following two axioms:
1. P()=1

2. If Ay, As,... € A are pairwise mutually exclusive events, then

oo

P(G Ap) = P(A)

=1

In this case the triple (2, A, P) is called a probability space.

This axiomatic approach is due to A. N. Kolmogorov (1933), and this can
be regarded as the origin of modern probability theory.

From the axioms we can easily derive the following properties of probability
spaces.
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Theorem 13.8

1. For any A € A we have

and consequently P() = 0.
2. If A,Be A and A C B, then
P(A) < P(B)

3. If A B € A, then
P(AUB) = P(A) + P(B) — P(AN B)

Proof. 1. Since AU A = Q, moreover A and A are exclusive events, the
statement follows immediately from the axioms.

2. If A C B, then AU (BN A) = B, moreover A and BN A are exclusive
events, therefore, by the axioms

P(B) = P(A) + P(BNA) > P(A)

because P(B N A) > 0.
The 3. statement is proven the following way. We divide the event AU B
into disjoint pieces like this:
AUB=(ANB)U(ANB)U(ANB).

Then, using the axioms, we get:

P(AUB) = P(ANB)+P(ANB)+ P(ANB)
= P(A)—-P(ANnB)+P(B)—P(ANB)+ P(ANB)

and the statement ensues. [

Example 13.9

In a Freshman class the probability that a randomly selected student passed
the mathematics exam is 0.72, passed the microeconomics exam is 0.66, and
passed both is 0.54. Find the probability that a randomly selected student

(a) passed at least one of those exams,

(b) passed the microeconomics exam, but did not pass the mathematics
exam,

(c) passed none of the exams.

Let A denote the event that a randomly selected student passed the math-
ematics exam, and B is the event that the student passed the microeconomics
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exam. Then P(A) =0.72, P(B) = 0.66 and P(AN B) = 0.54. Using the events
A and B, the desired probabilities can be given the following way.

(a) P(AUB) = P(A)+ P(B) — P(ANB) = 0.84
(b) P(ANB) = P(B) — P(AN B) = 0.12
(c) PLANB)=P(AUB)=1-P(AUB) =0.16

Recitation and Exercises

1. Reading: Textbook-2, Sections 2.1, 2.2, 2.3, 2.4, 2.5.

2. Homework: Textbook-2, Exercises 2.11, 2.19, 2.32, 2.33, 2.37, 2.38, 2.54,
2.58, 2.59, 2.61, 2.110, 2.112.

3. Review: Highschool Combinatorics and Binomial Theorem (Textbook-2,
Section 2.3), and "Probability Exercises"



Chapter 14

Sampling methods

14.1 Classical probability spaces

Definition 14.1 Consider a probability space (2, A, P). It is called a classical
probability space, if

e (2 is a finite set,

e for every w € Q2 we have {w} € A,

e every singleton subset of {2 has the same probability.

Obviously, if Q contains exactly n elements, then for every w € €2 we get

P} =

In particular, if the event A C ) consists of k elements, then

This observation can be interpreted as the probability of A can be given like:

P(A) = number of favorable outcomes

14.1
total number of outcomes ( )

The formula (14.1) will be called the classical formula.

Example 14.2 A regular playing die is tossed twice in a row. What is the
probability that the sum of the two numbers is exactly 77

97
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Let A denote the event that the sum is 7. Clearly, the sample space € con-
tains 36 elements (total number of outcomes), while A is a subset of 6 elements
containing the pairs (1,6), (6,1),(2,5), (5,2),(3,4), (4,3) (favorable outcomes).
Consequently

6 1

by making use of the classical formula (14.1).

Example 14.3 From a deck of 52 playing cards we draw 5 cards at random.
Find the probability that either all 5 cards are clubs, or at least one of them is
an Ace?

Introduce the following notations:
A = {all 5 cards are clubs} B = {at least one of them is Ace}

Obviously we are looking for P(A U B). Since the draws of any 5 cards are
equally likely, therefore:

puy— ) pay—1- )

(5)

and further:

By using the additive rule

P(AUB)=P(A)+ P(B)— P(ANB).

Example 14.4 On a seasonal sale in a supermarket there are 10 different pairs
of shoes in a basket. A thief quickly grabs 4 pieces of shoes from the basket at
random and runs away. What is the probability that he gets at least 1 complete
pair?

Below we outline two approaches, but only one of them is correct.

e First select one pair, the other two pieces of shoes can be taken arbitrarily,
another pair, or any two of the remaining shoes, i.e.:

10(5)

&
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e Find the probability of not having a complete pair at all. This can be
done by selecting a single shoe, and then putting its matching pair aside.
Keep in mind that the order of the selection does not count. Then passing
to the complement event, we obtain

20-18-16-14
1— 4

)

Check out that the two probabilities do not coincide! Which one is correct (if
any)?

Example 14.5 Keep tossing a die until 6 comes out for the first time. What
is the probability that we need an even number of tosses?

Let A stand for the event that we need an even number of tosses and Ay is
the event that we need k tosses, respectively. Then we have (verify!)

Py - (g)’“ 3

for every k =1,2,... The event A can be expressed like this:
A=Ay UAU...= UA%
k=1

On the right hand side the events mutually exclude each other, hence

0o o] 2k—1
P =3 P =3 (3) i

k=1 k=1

14.2 Sampling without replacement

Consider a set, of N objects so that m of them are defective. Select a sample of n
objects from the whole set at random, without replacement (n < m). Denote by
Ay the event, that the sample contains exactly k defective objects (0 < k < n).

Then
(%) - (o)
(%)

which we call the formula of sampling without replacement.

P(Ag) =

Example 14.6 From a deck of 52 playing cards we draw 5 cards at random
without replacement. Find the probability that we selected exactly 2 diamonds.
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Let A denote the given event. Making use of our formula we get

P(4) = (123)(5.2)(339) :

In this argument the diamonds are the "defective objects".

Example 14.7 Determine the probability that in Hungarian lottery (5 winners
out of 90) we have at least 2 winning numbers on a lottery ticket filled in at
random.

Denote by A the event that we have 2 winning numbers, and by Ay the event
that we have exactly k winning numbers on our ticket. Clearly, the events Ay, are
mutually exclusive for £ = 2,...,5. On the other hand A = A U A3 U Ay U As,
and this implies

P(A) =3 P4 =Y (k)(gff)—k)

since the probability of the disjoint union is the sum of the probabilities.

Example 14.8 From a deck of 52 playing cards we select 5 cards at random,
without replacement. What is the probability that all 4 suits (clubs, diamonds,
hearts, spades) are represented in the sample?

Examine the following argument. Let A denote the event that all 4 suits
appear in the sample of 5 cards. Since the choice of any 5 cards is equally likely,
we deal with a classical probability space.

In order to find out the number of favorable outcomes, take into account
that we have 13 options for each suit. Once one card from each suit has been
taken, then any card can be chosen from the remaining 48 cards.

The total number of outcomes: as many as the number of selections of 5

cards out of 52. So: .
13*-48
5

Is this the correct solution? If not, how could it be fixed?

14.3 Sampling with replacement

Consider again the set of NV objects so that m of them are defective. Select n
objects at random from the whole set, consecutively one after another with re-
placement. Let A; denote the event that the sample contains exactly k defective
items.
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Examine the draws of different orders. Since the selection of k defectives
and n — k non-defectives in any order admits the probability

N

N

mb (N—m)n_k _(m k mAn—k

o (%) (0-%)
and we have exactly () options for such selections, moreover they mutually
exclude each other, we receive

rew= (1) (5) (-3

This equality is called the formula of sampling with replacement.

Example 14.9 Take 5 cards out of a deck of 52 cards at random, successively
with replacement. (The card taken at a time is always put back.) Find the
probability that this way

(a) exactly 2 diamonds are selected,
(b) at least 2 diamonds are selected.

Introduce the event A; which means that exactly & diamonds are selected.

Then ) 5
5 1 1
P(As) = - 1— =
@ ra= () (3) (+-3)
and
5 k 5—k
5 1 3
(b) P(A2U...UA5)=>" <k> (4) <4)
k=2

because the events A,, ..., A5 are mutually exclusive.

14.4 The Bernoulli experiment

The argument above can be generalized the following way. Suppose that the
probability of an event A in a given experiment is a specific number 0 < p < 1.

Let us assume that we carry out this experiment n times in a row (indepen-
dently of each other) and every time we observe whether or not A occurs. This
procedure is called the Bernoulli experiment.

Let 0 < k < n be a given integer. Denote by Aj the event that A occurs
exactly k times out of the n trials.

Following the reasoning, analogous to the previos section, we immediately
get

P(Ay) = (Z)pk(l —p)" "
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for every integer k =0,1,...,n.

Example 14.10 In the Hungarian lottery we say that a lottery ticket is a
winning ticket, if it contains at least two winning numbers. Suppose we purchase
20 tickets and fill in them at random (independently of each other). Find the
probability that we will have at least 5 winning tickets.

For just one ticket the probability of being a winning ticket is:
5 (5 85
- W65
p= Z ™)
k=2 5

Since this is true for every ticket, and the tickets are filled in independently
from each other, this problem can be regarded as a Bernoulli experiment, with
the parameter p specified above. Therefore, applying our formula:

(e

where p is the probability given above.

Recitation and Exercises

1. Reading: Textbook-2, Sections 2.1, 2.2, 2.3, 2.4, 2.5.

2. Homework: Textbook-2, Exercises 2.20, 2.39, 2.42, 2.48, 2.64, 2.71, 2.72,
2. 113, 2.114, 2.115, 2.116.

3. Review: Highschool Combinatorics and Binomial Theorem (Textbook-2,
Section 2.3), and "Probability Exercises"
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Conditional probability and
Bayes’ Rule

15.1 Conditional probability

In several problems we need to find the probability of the event A under the a
priori condition that a certain event B occured. In such problems we take into
account only those elements of the sample space, which also belong to B.

This actually means that the sample space (2 is reduced to the subset B,
and we calculate the (conditional) probability of A with respect to B.

Definition 15.1 Consider the probability space (2, .4, P) and an event B € A
so that P(B) # 0. The conditional probability of the event A € A with respect
to B (read: probability of A given B) is defined by the equality:

P(ANB)

PAIB) = =55

Example 15.2 We toss a pair of dice, but we cannot see the outcome. Someone
tells us that one of them is a 5. What is the probability that other one is 67

ATTENTION! The answer is not 1/6 for the following reason!
Let A and B denote the following events:

B = {one of the tosses is 5} A = {the other one is 6}

On the one hand P(B) = 11/36 since there are 11 pairs that contain 5. On the
other hand AN B = {(5,6), (6,5)}, and hence P(A N B) = 2/36. Therefore:
P(ANB)  2/36 2

PAIB) = —p5) ~ 1136~ 11

103
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Example 15.3 We are looking for a friend in the university main building.
He can be in 5 rooms equally likely. The probability that he is in fact in the
building is 0 < p < 1. We have checked 4 of the 5 rooms, and he was in none of
them. What is the probability that he is in the fifth room?

Let Ay denote the event that our friend is in room number k (k = 1,...5),
which means P(A; U...U A5) = p. Since the events A are mutually exclusive,
this implies that P(Ay) = p/5 for every index k. Therefore, in view of the De
Morgan Rule we obtain:

P(As|A1N...NAy) = P(A5]A1U...UAy)
. P(A50(A1U...UA4))
N P(A,U...UAy)

Obviously (think about it!):
A5 CAU...UA,

and hence
P(AsnN (A1 U...UAy)) = P(A45)

Consequently, the desired conditional probability is:

P(As|Ain...NAy) = P(As|A1U...UAy)
P(As N (AU UAy)
- P(AyU...UA)
P(As) _ . p/5 p

P(A{U...UA,) 1—4p/5 5—4p

15.2 Independence

Consider the following simple example. Toss a die twice in a row, and we cannot
see the result. Someone tells us that the first outcome is an odd number. Find
the probability that the sum of the two numbers is 7.

Introduce the events A and B the following way:
A = {the sum is 7} B = {the first outcome is odd}

Then, by the definition of the conditional probability

_ P(ANB) _ 3/36 1
P(AIB) = P(B) ~ 18/36 6
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In view of one of a previous example this means
P(A|B) = P(A)

that is "the occurance of B has no impact on the probability of A". This fact
is expressed like "the event A is independent of the event B".

In case of P(B) # 0 the condition P(A|B) = P(A) is equivalent to the
equality:
P(AnB)=P(A)- P(B) (15.1)

Since we figure that independence is a symmetric relation (i.e. if A is indepen-
dent of B, then B is also independent of A) and the above equality is visibly
symmetric, relation (15.1) can serve as a comfortable definition for indepen-
dence.

Definition 15.4 Let (92,4, P) be a probability space, and A, B € A are
observable events. We say that A and B are independent, if they fulfill the
condition (15.1).

Example 15.5 From a deck of 52 cards we draw 2 cards in succession with
replacement. Find the probability that the first draw is a diamond, and the
second draw is an Ace.

Introduce the following events:

A = {first draw is a diamond} B = {second draw is an Ace}
Then 13-4 13 4
P(ANB)=-—~—-22._ _P(A)- P(B
(40 B) 522 52 52 (4)- P(B)

that tells us that the events A and B are independent.

ATTENTION! We NEVER argue like: since the events A and B are
"visibly" independent, therefore P(ANB) = P(A)- P(B). On the contrary: we
conclude the independence of events by verifying this equality!

15.3 Theorem of Total Probability

Example 15.6 There are 3 identical envelopes on our desk,

1. the first contains 2 of 1000 Ft bills and 3 of 2000 Ft bills (banknotes),
2. the second contains 5 of 1000 Ft bills and 2 of 2000 Ft bills,
3. the third contains 5 of 2000 Ft bills.
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We select one of the envelopes at random and draw one of the bills from the
envelope. What is the probability that we take a 2000 Ft bill?

Let A denote the event that we draw a 2000 Ft bill. The probability P(A)
would be easy to determine if we knew, which envelope is selected. In particular,
if By stands for the event that envelope k is selected, then the conditional
probabilities P(A|By,) are 3/5, 2/7 and 1 respectively.

This observation immediately gives an idea of how to solve the problem. The
events Bj are mutually exclusive and their union is the certain event. Thus:

A=ANQ=AN(ByUByUB3) = (AN B;)U(ANBy)U (AN B3)
Since the events on the right-hand side are exclusive:

P(A) = P(ANB;)+P(ANBy)+ P(AN Bs)
= P(A|B1)P(B1) + P(A|B2) P(B2) + P(A|B3)P(B3)
2 1 1

Wl =
-3
w
w

The argument above can be exteded to an arbitrary number of events By.
This leads us to the following definition.

Definition 15.7 We say that the observable events By, Bs,... € A form a
partition of the sample space, if none of them has probability zero, and further

1. they are mutually exclusive, i.e. B; N B; = 0 if i # j,

2. one of them occurs, i.e. ByUBy U... = .

Following the analogous argument of Example 15.6 for an arbitrary number
of events By, we come up with the following theorem.

Theorem 15.8 (Theorem of Total Probability) Let us suppose that in the
probability space (U, A, P) the events By, Ba, ... form a partition of the sample
space. Then for any event A € A we have

P(A) = P(A|By)P(By) + P(A|B2)P(By) + . ..

Proof. Indeed, if the events By, form a partition of the sample space, then

A=(ANB)U(ANBy)U(ANBs)U...
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where the terms of the union are mutually exclusive. Thus:
P(A)=P(ANB;)+ P(ANBs)+P(ANB;3) +...
By the very definition of the conditional probability, for every index k
P(AN Bi) = P(A|B) - P(By)

and the theorem ensues. [J

Example 15.9 If the probability that the number of incoming calls to a call
center is m on a given day is given by 0 < ¢, < 1, and every call is a wrong
number with probability 0 < p < 1 (independently of each other), find the
probability that the number of wrong calls is exactly k on that day.

Introduce the following notations. Let A be the event that the center receives
k wrong calls, and B, is the event that the total number of incoming calls is n.
In this case the events B,, form a partition of the sample space, hence by the
theorem of total probability

P =30 PAIB,) - P = Y an () )1 p
n=1 n=k

In fact, for n > k the number of wrong calls can be regarded as the outcome of
a Bernoulli experiment: how many wrong calls do we have out of n incoming
calls. Keep in mind that we have P(A|B,,) =0, for n < k.

15.4 Bayes’ Rule

Let us return to Example 15.6. Assume that someone has performed the draw
(we did not see it) and tells us that the draw is a 2000 Ft bill. What is the
probability that the bill was taken from the first envelope?

Using our former notations, we need to find the conditional probability
P(B1]A4).
P(ANB1) _ P(A|B1)P(By)
P(B1|A) = =
The denominator of the fraction on the right-hand side can be evaluated by the
theorem of total probability:

P(A|By)P(By)

P(B1]A)

+1-

Wl
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This argument can be extended to any partition of the sample space.

Theorem 15.10 (Bayes’ Rule) Let us suppose that in the probability space
(2, A, P) the events By, Ba, ... form a partition of the sample space. Then for
any event A € A, P(A) # 0 and any index i we have

P(A|B;i)P(B;)
(A[B1)P(B1) + P(A|B2)P(Bz) + . ..

P(Bi|A) = P

Proof. Indeed, by the definition of the conditional probability

_ PANB) _ PAIB)P(B)
T R TR

and our statement is proven by applying the theorem of total probability. [

Example 15.11 For instance, in our call center Example 15.9 the probability
that the number of incoming calls on a given day is ¢ provided that exactly k
wrong calls have been registered is

i (;)p*(1 —p)=F
> e ()P (1 — )k

for i > k, while this probability is 0, for i < k.

P(Bi|A) =

Recitation and Exercises

1. Reading: Textbook-2, Sections 2.6 and 2.7

2. Homework: Textbook-2, Exercises 2.80, 2.81, 2.87, 2.95, 2.97, 2.100, 2.109,
2.118

3. Review: Highschool Combinatorics and Binomial Theorem (Textbook-2,
Section 2.3), and "Probability Exercises"



Chapter 16

Random variables and
distributions

16.1 Random variables

Definition 16.1 Consider a probability space (2,4, P). The function
X: Q=R
is called random wvariable, if for any x € R
{X<z}={weQ: X(w)<a}e A

that is all level sets are observable (and hence possess a probability).
In the examples below specify the range R of the given random variables!

Example 16.2

1. Toss a pair of dice. Let X denote the sum of the numbers. Then R =
{2,3,...,12}

2. Let X be the least winning number in Hungarian lottery. Then R =
{1,2,...,86}

3. Keep tossing a die until 6 comes out for the first time. Denote by X the
number of tosses. Then R = N.

4. Pick a point arbitrarily on the unit disc (with center at the origin and
radius 1). Let X denote the distance of the point from the origin. Then
R =10,1].

109
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Definition 16.3 We say that a random variable is discrete, if its range is
a countable set (finite or infinite). That is the elements of the range can be
arranged in a finite or infinite sequence.

In our examples the first three random variables are discrete, but the fourth
is not.

16.2 Distribution of discrete variables

Definition 16.4 Let X be a discrete random variable, whose range is R =
{1, x2,...}. The sequence

pr =P(X =), k=1,2,...

is called the distribution of X.

Example 16.5 Consider our introductory examples for random variables

1. If X means the sum of the numbers when a pair of dice tossed, then the
distribution can be given by the following chart:

x| 213 ]4]...]12
AR

6 ‘ 36 ‘ e
2. If X means the least winning number in lottery, then the distribution can
be given by the following formula:

[=2]
w

90—k
pk:( i) k=1,2,...86

(5)

3. If X means the number of tosses needed to get the first 6, the distribution

of X is: 1
5\ 1
== - = k=1,2,...
n=(3) 3
Unlike in the previous two examples, this distribution is an infinite se-
quence.

The most important properties of distributions are summed up in the fol-
lowing theorem.

Theorem 16.6  Consider a discrete random wvariable X with range R =
{x1,22,...} and distribution p, = P(X =xy), k=1,2,.... Then
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e 0 <pir <1 for all indices k =1,2,....
.p1+p2+:1

e If a < b any real numbers, then

Pla< X <b) = Z Dk

a<xp<b

where the sum is taken for all indices k such that the inequality a < xp < b
holds true. The last statement remains true if instead of the strict inequal-
ities, the signs < are inserted simultaneously on both sides.

16.3 The cumulative distribution function

Definition 16.7 Consider a probability space (€2, A, P), and a random variable
X : Q — R. For every = € R set

F(z)=P(X <uz).

The function F': R — [0, 1] is called the cumulative distribution function of X.
(Or sometimes briefly distribution function.)

Example 16.8 It is easy to see that the distribution function of the random
variable X defined in the introductory example 4, is

0 ifx <0
Fz)y=¢ 2* if0<z<1 (16.1)
1 ifex>1

In fact we mean that the probability that the randomly picked point belongs
to a given subset of the unit disc is proportional to the area of the subset. In
particular, for instance P(0 < X < 1/2) =1/4.

In several problems in probability and statistics, and their applications we
need to find a a probability of the form P(a < X < b). This probability can
be expressed in term of the distribution function. The basic properties of the
distribution function are summarized in the theorem below.

Theorem 16.9 Let X be a random variable and consider its distribution
function F.

e For every x € R we have 0 < F(z) < 1.
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e [ is monotone increasing and at every point continuous from the left.

e lim F(z)=0 and lim F(x)=1.
T—+00

TrT——00

o For any real numbers a < b we have

Pla< X <b)=F(b)— Fla).

If the range of a discrete random variable X is given by R = {z1,zo,...},
where 1 < 5 < ..., and X takes these values with the probabilities p;, po, ...
respectively, then the distribution function of X has the form:

0 ifx<a
pr+...+pr ifxy <z <y

F(z) = {

for each k =1,2,.... Sketch the graph!

This tells us that in this case the distribution function is piecewise constant.
Instead of using the formula P(a < X < b) = F(b) — F(a), it is reasonable to
collect all elements of the range of X that are in the open interval (a,b). In
particular, if P(X = xy) = p for every k, then

Pla< X <b) = Z Dk

a<lzp<b

On the right-hand side only the probabilities P(X = xj) appear, therefore, it
is more convenient to rely on the distribution X.

16.4 The density function

Definition 16.10 We say that X is continuously distributed, if there exists
an integrable function f on the real line with

Flz) = / F(t) dt
for every « € R. In this case the function f is called the density function of X.

For instance, in the example (16.1) we can easily verify that

f(t):{ 2t ifo<t<1

0 elsewhere

If the random variable X is continuously distributed, then the distribution func-
tion F' is continuous. Moreover, at every point « where the density function f
is continuous, the distribution function F' is differentiable, namely

F'x) = f(x)
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Theorem 16.11 If X is continuously distributed and f is its density function,
then for any real numbers a < b

P(a<X<b):/bf(t)dt

What can we say about the probability that the random variable X takes a
single point? Let a € R be any real number, then we conclude that

3
=
I

&
I

[ee]
1 1
P <X -} =1lm Pla<X —
(n|:1{a_ <a+n}) Jim. (a < <a+n)

—  lim (Fla+ ) — F(a)) = lim F(z)— F(a)

n—00 n r—a+

Consequently P(X = a) equals the "jump" of F' at the point a. ATTEN-
TION: Why can we pass to the limit in the first line of the array formula?

A simple consequence of the previous argument is that P(X = a) = 0 if
and only if F' is continuous at the point a. In particular, if X is continuously
distributed, then F' is continuous on the whole real line, hence for any real
numbers a < b we get

Pla<X <b)=Pla<X <h)

We sum up the basic properties of density functions.

Theorem 16.12 If f is the density function of the random variable X, then

1. f(z) > 0 for every x € R,

2.
+oo
| @,

—00

3. if a < b are any real numbers, then

P(a<X<b):P(angb):/bf(x)dx.

Example 16.13 Let us suppose that the density function of X is given by

x ifo<ax<1
flz)=19 2—2 ifl<az<2
0 elsewhere
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ATTENTION! Verify that f fulfills all conditions of the previous theorem, so
it is in fact a density function.

Then, for instance
3/2

PO< X <3/2) = ; f(z)dz

1 3/2
= / xder/ (2—a)dzx
0 1

2
1—/ (2—x)dx =
3/2

P(0< X <3/2)

o]

Recitation and Exercises

1. Reading: Textbook-2, Sections 3.1, 3.2 and 3.3

2. Homework: Textbook-2, Exercises 3.7, 3.9, 3.11, 3.14, 3.21, 3.22, 3.25,
3.26, 3.32 and 3.36

3. Review: Calculus, integration and infinite series and "Probability Exer-
cises"



Chapter 17

Mean and variance

In everyday language by the mean (or expected value) of a random variable we
think of the weighted average, by the standard deviation we think of the average
deviation from the mean. Precise definitions will follow below.

17.1 Mean of discrete distributions

Definition 17.1 Consider a discrete random variable X whose distribution is
given by

P(szk):pk k=1,2,...
We say that X has a mean (or expected value) if the series Y ;- |ax| - py is
convergent. In this case the sum

oo
E(X)=) o p
k=1
is called the mean (or ezpected value) of X.

Remark that the convergence of the series Y -, |zx| - pr is an important
condition, because otherwise the sum F(X) might depend on the rearrangement
of the terms.

Example 17.2 Toss a pair of playing dice. Find the expected value of the
sum of the two numbers.

Let X denote the sum of the two numbers, then the distribution of X is
given in Example 16.5. Therefore, the mean of the sum is:

E(X)—ik L I U P
I =S 36 36
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Example 17.3 Take a sample of 5 cards from a deck of 52 playing cards at
random. Find the expected number of diamonds in the sample.

Denote by X the number of diamonds in the sample. By using sampling
without replacement, the distribution of X is given by:

() - %)
(5)

P(X =k) = k=0,....5

Hence, the expected value is:

5
E(X) = Y kP(X=k) =) k-t =%

Example 17.4 Consider the Bernoulli experiment that we discussed in Section
14.4. and determine the expected number of occurances of the event A out of
n trials.

Let X denote the number of times A occurs, then the distribution of X is:

P(X =k) = (Z)pk(l—p)n_k k=01,....n

By virtue of the binomial theorem, the mean of X is:
- n

E(X) = k F(L—p)n*
x) = Yr()rtap

k=0

- n—1)! 1 e
- npz(k:—(l)!(n)—k:)!pk (=p

~ (n—1 k—1 n—k
= np ( )p (I-=p)" " =np
. k—1
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17.2 Mean of infinite distributions

In this section we investigate discrete random variables with infinite range.

Example 17.5 We keep tossing a die until 6 comes out for the first time.
What is the expected number of tosses?

If X means the number of tosses, then the distribution of X is given by

k—1
1
P(X =k) = (2) 5 k=12

Thus the expected value is

> 5\*' 1 1 1
=3k (5) 55 o=

Example 17.6 Let A be a given positive number, and consider a random
variable X with the following distribution
DUENN
P(X=k)= e

In view of the power series of the exponential function, the mean of X is:

k=0,1,2,...

Sl )\k ) 0 )\kfl .
k=0 k=1

= A Zz\—' =Xe et =\
i=0

Example 17.7 In a box there is a black and a white ball. We take one ball at
random. If it is black, we put it back, and add another black ball. We continue
this process until the white ball is selected. Find the expected number of draws.

If X stands for the number of draws, then the distribution of X can be given
like P(X =1) =1/2, and:
123 k-1 1 1
2 3 4 ko k+1  k(k+1)

Therefore, for the mean of X we obtain the following infinite series:

E(X):];kP(X:k):;km:;m

Apart from the first term, this series exactly coincides with the harmonic series,
which is divergent. Consequently, this random variable does not have a mean.

P(X = k) k=23,...
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17.3 Mean of continuous distributions

Definition 17.8 Let X be a continuously distributed random variable with
. . . . . oo
density function f. We say that X has a mean if the improper integral f_oo || -

f(z) dx is convergent. In this case the integral

E(X):/_o;x-f(x)dx

is called the mean (or expected value) of X.

Example 17.9 Verify that the function f below defines a density function

1 1

(this is the so-called Cauchy distribution), but it has no mean, since the im-

proper integral
1 /°° x
— —dx
T ) o 1+ 22

is divergent. See Example 9.5 for the details.

Example 17.10 Consider an interval [a,b] on the real line, and suppose the
density function of the random variable X is given by

1 .
- —a lf a<xr< b
() = { 0 elsewhere

Verify that f is really a density function! Then the mean of X is

b 2 2
T 1 b* —a a+b
E(X)_/a b—adx_b—a- 22

which is the midpoint of the interval [a, b].

17.4 Basic properties of the mean

The mean F(X?) is called the second moment of the random variable X (if it
exists). It can be shown that

Z TEpk if X is discrete
E(X?) ={ ks
/ 22 f(x)dr if X is continuous
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Below two fundamental properties of the mean are formulated.

Theorem 17.11

1. If X has a mean, then for any real numbers o and § E(aX + 8) =
aE(X)+ 8.

2. If E(X), E(X?) emist, then E(aX?+ BX +7) = aB(X?) + BE(X) + 1.

Example 17.12 Let X\ be a positive number, and assume that the density
function of X is given by

e ™ if x>0
f(z) = { 0 elsewhere.

Based on Example 9.3 this is really a density function, since

/Ooof(m)dle.

On the other hand, Example 9.8 shows that the mean is
o 1
E(X):/ xf(z)de = —.
0 A

The second moment can be evaluated by integration by parts (see Example 9.9):

17.5 Variance and standard deviation

The variance of a random variable is the average squared deviation from the
mean.

Definition 17.13 The variance of a random variable of X (if it exists) is
defined by
Var(X) = E(X - BE(X))?)

Then the standard deviation of X is D(X) = y/Var(X).

Sometimes the notation D?(X) is also used for the variance (for obvious
reason).
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The variance can be evaluated in the following simplified way:
Var(X) = E((X - E(X))?) = E(X?-2E(X)X + E(X)?)
= E(X?) -2E(X)*+E(X)?=E(X? - B(X)*
Basic properties of the variance:
Var(aX + ) = a*Var(X), D(aX + 8) = |a| - D(X)
Verify these two directly, based on the definition!

Example 17.14 Find the variance and standard deviation of the continu-
ously distributed random variable X in Example 17.12 (where A > 0 is a given

constant).

2 1 1
Var(X) = B(X) = BX)? = 35~ 15 = 35

and in particular

Example 17.15 Consider now the continuously distributed random variable
X examined in Example 17.10. We can calculate the second moment this way:

0o b 3qb
B(X?% = / me(a:)d:c:/ bx_zadxbia{z;}

b — a® B b2 + ab + a?
3(b—a) 3

Therefore, the variance is:

b2 b+ a? 2 4 2ab + b? b—a)?
Var(X) = B(X?) — B(X)2 = X Fa”  at2abtb”  (b-a)
3 4 12
moreover, the standard deviation of X is the square root of the variance:
b—a
D(X) = .
(X) = 7

Recitation and Exercises

1. Reading: Textbook-2, Sections 4.1 and 4.2.

2. Homework: Textbook-2, Exercises 4.1, 4.2, 4.4, 4.8, 4.12, 4.13, 4.14, 4.34,
4.37, 4.38, 4.43 and 4.50

3. Review: Calculus, integration, improper integrals and infinite series, and
"Probability Exercises"



Chapter 18

Special discrete distributions

This chapter gives a summary of the most widely applied discrete distributions.

18.1 Characteristic distribution

Let (2, A, P) be a probability space and consider an event A € A with P(A) = p,

and 0 < p < 1. Then the random variable

Y 1 if A occurs
"1 0 if A does not occur

possesses the distribution

P(X=0)=1-p P(X=1)=p

This is called the characteristic distribution associated with the event A.

Theorem 18.1
o The parameter of the distribution is: 0 < p < 1.
e The mean of this distribution: E(X) =p

e The variance of this distribution: Var(X) = p(1 — p).

Proof. We only need to verify the variance. Since the second moment is

E(X?) = p, the statement ensues.

121
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18.2 Binomial distribution

Let (2, A, P) be a probability space, and consider the Bernoulli experiment,
where we carry out n independent experiments in a row, and every time we
observe if a given event A occurs. Suppose that P(A) = p, 0 < p < 1 is given.
Let X denote how many times A comes out. By the Bernoulli experiment the
distribution of X is given by

P(X =k) = <Z)pk(1—p)nk k=0,1,2,....n

This distribution is called the binomial distribution.

Theorem 18.2

o The parameters of the distribution: n € N and 0 < p < 1.
e The mean of the distribution: E(X) = np

e The variance of the distribution: Var(X) = np(1 — p).

Proof. In view of Example 17.4 we only need to check the variance First
find the second moment.

BXY = Zn:kz(Z)pk(l—p)"_k=

k=1
— - k(k—l) k(l )n—k+ - k k(l_ )n—k
];2 (k>p p ; (k>p p
2 — (n—2 k—2 n—k 2 2
= n(n—1)p Z(k_2>p (L=p)" " +np=(n"—n)p”+np.

Therefore, the variance is
Var(X) = E(X?) = B(X)? = n(n — 1)p? + np — n’p® = np(1 — p)

where we observed that the second sum in the second line is precisely the mean.
O

18.3 Hypergeometric distribution

Examine the following sampling without replacement problem. Consider a set
of N objects in which m of them are defective. Select a sample of n objects



18.4. GEOMETRIC DISTRIBUTION 123

without replacement from the whole set (n < m). Let X denote the number of
defective objects in the sample. Then the distribution of X is:

(%) - (k)
()

This distribution is called the hypergeometric distribution.

P(X =k) = k=0,1,2,...,n

Theorem 18.3

o The parameters of the distribution: N,m,n € N.

o The mean of the distribution:

EX)=n-

=2|3

e The variance of the distribution:

Var(X):J]Y[:T'n~%(1—%).

Proof. By applying the argument of Example 17.3, we again only have to
calculate the variance. First find the second moment.

E(X?) = ZkQ )((N)m Zk ~1) G )((")’“ +Zk m)

_ m(m—1)n(n — 1) & (mjz) : (nj\i ") m
TN & mh W
~ m(m—1)n(n—1) m

- NN-1) "N

Then we conclude

m(m — 1)n(n —1) mo_ M N-—-n m m
= L
) NNv-1) "~ "wnTnN_1" N( )

Var(X

just as we stated. O

18.4 Geometric distribution

Take a probability space (£, .4, P), and consider an event A such that P(A) = p,
wher 0 < p < 1 is given. Keep performing the experiment until the event A
occurs for the first time. Let X denote the number of trials. The distribution
of X is given by:

PX=k=>0-pFp Ek=12...
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This distribution is called the geometric distribution.

Theorem 18.4

e The parameter of the distribution: 0 < p < 1.

e The mean of the distribution:

1
E(X) ==
p
e The variance of the distribution:
1
Var(X) = pzp .

Proof. The mean of this distribution is easily obtained by following the
argument of Example 17.5, so we only need to find the variance. The second
moment can be evaluated the following way. Using the second derivative of the
power series at |z| < 1, we have

o] . 2
D k(k—1)ak? = (e

k=2

If we employ this identity with x = 1 — p we receive

E(X?) = Y KA-p)fTp=> k(k-1)(1—p) " 'p+ > k(1 -p)Fp
k=1 k=2 k=1
- L, 1 2p1-p) 1
S S Y (RSN ORI [t )
P p P p
Thus we get
2p(1—p) 1 1 1—p
Var(X)=E(X*)-EX)? ="+ - - - =
(X) = E(X7) - E(X) i PRl R
and this is what we needed. O

18.5 Poisson distribution

Suppose that X is a random variable, whose range is {0} UN and its distribution
is defined by
)\k
P(X=k)= ﬁe*A k=0,1,2,...

wher A > 0 is a given number.
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It is not hard to see that we really defined a distribution. Indeed,

—e
k!
k=0

7)\267)\.6)\:1

based on the power series of the natural exponential function. This infinite
distribution is called the Poisson distribution.

Theorem 18.5

e The parameter of the distribution: \ > 0.
e The mean of the distribution: E(X) = A,

o The variance of the distribution: Var(X) = A.

Proof. In view of Example 17.6 we only have to calculate the variance. The
second moment is obtained as follows.

2 - 2)‘k A - >‘k A - Ak A
BE(X*) = >k e :Zk(kfl)k!e JerHe
k=1 k=1 k=1
Sl )\k—?
= ) e,

= (k—2)!

Hence, the variance is
Var(X)=E(X?) - EX)2 = 24+ X- X2 =)\

and that completes the proof. O

Let us remark that the Poisson distribution can be regarded as the "limit
distribution" of the binomial distribution as it is explained in the following.

Theorem 18.6 If A > 0 is fized and 0 < p, < 1 is a sequence with np, = A\,

then .
. n k _ n—k __ L -
Jim (k>pn(1 pa)" TN = e

for every k=0,1,2,....

Proof. Indeed, for each fixed index k£ we have

(rsa=rors = ()G (-2)

_ n(n-1)..(n—k+1) _)J“(l_)\>”<1_)\>k

nk k!
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Here examine the limits of the four factors separately. It is easy to see that they
are 1, \*/k! e~ and 1 respectively. That proves our theorem. O

Practically, this theorem means that for large values of n and for small values
of p the binomial distribution can be approximated by the Poisson distribution,

i.e. )
ny g ek _ A"

1-— ~ —

(k)p"( Pn) Kl

for every index 0 < k < n.

Example 18.7 Let us suppose that in a brand new Suzuki Vitara the proba-
bility that the airbag is defective, is 0.002 independently from each other. The
factory announces withdrawal if at least 10 malfunctions are reported for the
2000 cars that are manufactured in a month. Find the probability that no
withdrawal has to be announced.

let X denote the number of defective cars in a given month. Since this is
a Bernoulli-experiment (the probability of malfunction is 0.002 independently
from each other), it follows that X has binomial distribution with parameters
n = 2000 and p = 0.002. Therefore the exact value of the probabilty is

9
2000 .
P(X<9) =) ( f )0.002k0.9982000_k
k=0

which not easy to handle. Based on our theorem, we can give an approximation
of this probability by using the Poisson distribution (we say that "n is sufficiently
large and p is sufficiently small"), moreover A = np = 4, so

. 9
2 4
Z ( 0}?0) 0.00250.9982000—k E He*‘* ~ 0.9919
k=0 k=0

This latter value can be determined by looking up in the Poisson tables that
can be found on page 732 in our Textbook.

Recitation and Exercises

1. Reading: Textbook-2, Sections 5.1, 5.2, 5.3 and 5.5

2. Homework: Textbook-2, Exercises 5.5, 5.9, 5.10, 5.15, 5.27, 5.33, 5.47,
5.56, 5.60, 5.66, 5.70 and 5.72

3. Review: Calculus, integration, improper integrals and infinite series, and
"Probability Exercises"



Chapter 19

Special continuous
distributions

19.1 Uniform distribution

Let [a,b] be a given finite interval. Consider a random variable X with the
following density function:
1

o —a lf a<xr< b
f(x) = { 0 elsewhere

This random variable X is said to have uniform distribution on the interval [a, b].
The name comes from the fact that the probability that X is in a subinterval
of [a, b] is proportional to the length of the subinterval.

Theorem 19.1
e The parameters of the distribution: a and b, a < b.

e The mean of the distribution:

b
B(X) =47
2
e The variance of the distribution:
(b—a)®
Var(X) = .
ar(X) B

Proof. These statements are immediate consequences of the results in Ex-
amples 17.10 and 17.15. O

Example 19.2 Let X be a uniformly distributed random variable with
E(X) =5 and Var(X) = 3. Find the probability P(4 < X < 10).

127
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The unknown endpoints of the interval a and b satisfy the following equa-
tions:

a;rb _ 5
(b—a)?
= 3
12

whose solutions are a = 2 and b = 8. Therefore,
2
P(4<X<10):P(4<X<8)=g

since the subinterval beyond [4, 8] comes with 0 probability.

19.2 Exponential distribution

Let A > 0 be a fixed number. Consider the random variable X with the following

density function
e if x>0
f(z) = { 0 elsewhere

In this case we say that X has exponential distribution. nevezziik.

ATTENTION: Verify that f really defines a density function! Sketch the
graph of the function!

Theorem 19.3

o The parameter of the distribution: A > 0.
e The mean of the distribution: E(X) =1/A,

o The variance of the distribution: Var(X) = 1/A2.

Proof. Our theorem is an immediate consequence of the equalities in Ex-
amples 17.12 and 17.14. O

Example 19.4 Consider an exponentially distributed random variable X with
a given parameter A > 0. Find the probability P(X > E(X)).

Our theorem claims that E(X) = 1/, thus

P(X>EX)) =P (X > 1) = / e A dy = [764%];";X _ 1
A /A e
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We say that the exponential distribution is memoryless in the following sense.
If X is exponentially distributed with a given parameter A > 0, and ¢, s > 0 are
given positive numbers, then

PX>t+s/X >t)=P(X >5s).

Indeed, the event {X > ¢ + s} implies the event {X > ¢}, therefore, the condi-
tional probability on the left-hand side can be written like

P(X>t+s) 1— [ xedo
P(X >1) 1- fg e~ dx

P(X >t+s|X >1t)

efA(tJrs)

= T =67>‘S:1—/ Ae M dr = P(X > s).
0

If for instance X denotes the waiting time between two occurances (i.e. two
telephone calls, or two customers, etc.), then the lack of memory means that
the further waiting time does not depend on how much we have been waiting.

Conversely, it can also be proven that if a continuous distribution is memo-
ryless, then it is necessarily the exponential distribution.

There is an interesting relationship between the Poisson distribution and the
exponential distribution. In particular, if the waiting times between successive
occurances are independent, exponentially distributed random variables with
identical parameter A\ > 0, then the number of occurances in a unit time inter-
val has Poisson distribution with the same parameter. These features will be
discussed in later chapters.

19.3 The standard normal distribution

Because of the central role of the standard normal distribution we use a distin-
guished notation for its density function and cumulative distribution function.

Definition 19.5 We say that the random variable Z has standard normal
distribution, if its density function is given by

1 a2

o(x) = eTT —oco<x<00

V2r

In view of formula (9.2), we see that ¢ really defines a density function.
As an exercise analyze the function ¢, and show that it possesses the following
properties.

lim ¢(z)= lim @(z)=0

T—r—00 T——+00
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moreover ¢ is strictly monotone increasing on the interval (—oo,0), strictly
monotone decreasing on the interval (0, 00), and reaches its global maximum at
z=0.

By analyzing the second derivative, we can see that ¢ is convex on the
intervals (—oo, 1) and (1,+00), while it is concave on the interval (—1,1), and
consequently has points of inflection at z = —1 and = = 1 respectively.

EXERCISE: CREATE THE GRAPH OF THE FUNCTION!

Theorem 19.6
e The parameter of the distribution: no parameter.
o The mean of the distribution: E(Z) = 0.
o The variance of the distribution: Var(Z) = 1.

Proof. Example 9.6 shows that E(Z) = 0, and equality (9.3) tells us that
E(Z?) = 1. Therefore
Var(Z)=E(Z*) - E(Z)*=1.
as we stated. O
Let @ denote the standard normal cumulative distribution function, i.e.

This function has the properties of cumulative distribution functions, but its
interesting feature is that it cannot be expressed explicitly in terms of elementary
functions or their finite combinations.

Observe however that ¢ is an even function, in other words it is symmetric
with respect to the y-axis. This implies that ®(0) = 1/2, and further
O(—x)=1—d(x) (19.1)

for every real number zx.

Example 19.7 Because of its central role in Statistics and other applications
we can find tables for the values of the ® function in most probability textbooks
and spreadsheet programs like the Microsoft Windows Office Excel application.
See the tables on pages 735-736 of our Textbook!

If for example Z is a standard normally distributed random variable, the
find the probability

P(-2<Z<2)
Using the table on page 736 of our Textbook, we get
P(-2<Z<2) = 92)-2(-2)=2(2)—(1-2(2)=29(2)—-1=

= 2-0.9772—-1=0.9544
where we exploited the symmetry property (19.1).
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19.4 Normal distribution

Definition 19.8 Let m and o be given real numbers where o > 0. Let Z be
a standard normally distributed random variable, then the random variable

X=0Z4+m

is said to have normal distribution with (m,o)-parameters (or briefly (m,o)-
normal distribution).

Making use of the properties of the standard normal distribution, and the
properties of the mean and the variance (refer to Theorem 17.11) we get the
following theorem for (m, o)-normal distributions.

Theorem 19.9

e The parameters of the distribution: m € R, ¢ > 0.
e The mean of the distribution: E(X) =m,

o The variance of the distribution: Var(X) = o2.

How can we find the cumulative distribution function and the density func-
tion of this random variable X? Let F denote the cumulative distribution
function of X, and take a real number x arbitrarily. Then

F(x)P(X<o:)P(JZ+m<x)P<Z< xam> q,<f'fam)

IMPORTANT! It is vital that o > 0, so when we divide by o the inequality will
not change!

We get the density function of X by differentiating F: for every z € R we

have ) ) ,
o) = Fla) = S (122) = e
g

o 2ro

by the Chain-Rule. This function has a global maximum at x = m, furthermore
it has points of inflection at x = m — o and x = m + o respectively. CREATE
A PICTURE!

Example 19.10 For an (m,o)-normally distributed random variable X the
probability of being in an interval can always be expressed in terms of the
standard normal cumulative distribution function ®.

Indeed, if a < b are arbitrarily taken real numbers, then

g g

P(a<X<b):F(b)—F(a):<I>(b_m> —@(“_m> .
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For example, for a normally distributed random variable X with parameters
m = 10 and o = 2 we have

P(T<X <13) = F(13)—F(7) = ®(1.5) — ®(—1.5) = 2&(1.5) — 1 =
2.0.9332 — 1 = 0.8664

where we used the symmetry of ®, and the tables on page 736 in the Textbook.

Recitation and Exercises

1. Reading: Textbook, Sections 6.1, 6.2, 6.3, 6.4, 6.6

2. Homework: Textbook, Exercises 6.2, 6.3, 6.4, 6.6, 6.7, 6.9, 6.11, 6.15, 6.17,
6.18, 6.45 and 6.46 5.66, 5.70 and 5.72

3. Review: Calculus, integration, improper integrals and infinite series and
"Probability Exercises"



Chapter 20

Joint distributions

20.1 Joint cumulative distribution function

Defintion 20.1 Let X and Y be random variables (not necessarily on the
same sample space). For any real numbers x and y the function

F(z,y) = P(X <z,Y <y)

is called the joint cumulative distribution function of X and Y.
The following statement comes directly from the definition.

Proposition 20.2 If F is a joint cumulative distribution function, then

lim F(z,y) = Em F(z,y)=0
Yy——00

Tr—r— 00
for any fized real y and x respectively, moreover

lim F(z,y)=1

x,y—-+00

Similarly to the one dimensional case, we separately discuss discrete and
continuous distributions.

20.2 Discrete joint distributions

Definition 20.3 Assume that the range of the variable X is {z1, zo, ...}, and
the range of the variable Y is {y1,y2,...}. Then the joint distribution of X and
Y is given by

pik = P(X =2;,Y = yi) 1=1,2,... k=1,2,...

133
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These values can be arranged in a chart:

y\z| 21 w2 a3
Y1 P11 P21 P31
Y2 P12 D22 P32
Ys P13 P23 P33

Obviously for all indices p;, > 0 and >, >, pir = 1.

Let A be a subset of the plane. By using the joint distribution, how can we
evaluate the probability P((X,Y) € A)? Collect all values z; and y; for which
(zi,yx) € A, then

P(X,Y)eA) = > pu
(ziyx) €A

Example 20.4 For instance, if we consider the following joint distribution

y\z| 0 1 2 3
0 [ 01 0.08 013 0.04
1 (004 02 008 0
2 1003 0 005 0.25

then for the subset A = {(z,y) € R? : z + y > 3} we have:
P(X +Y > 3) = 0.04 + 0.08 +0.05 + 0.25 = 0.42

A natural question to ask is that based on the joint distribution, how can
we determine the distributions of X and Y alone? As we conclude from the
definition

Pi:P(X:l’i):Zpik:ZP(X:%',Y:yk) i=1,2,...
k %

Namely, the probability p; = P(X = z;) can be obtained by taking the sum of
the elements in the i-th column. Therefore, the sums of columns provide the
distribution of X.

In an analogous way,
which means that the distribution of Y is obtained by taking the sums of rows.

Definition 20.5 The distributions of X and Y are called the marginal distri-
butions of the joint distribution.
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20.3 Continuous joint distributions

Definition 20.6 We say that X and Y are continuously distributed, if there
exists a non-negative integrable function f on the plane suvh that for all real
numbers x and y we have

F(z,y) = /; /: f(t,s)dsdt

where F' is the joint cumulative distribution function of the random variables
X and Y. This function f is called the joint density function of X and Y.

Clearly, if f is a joint density function, then
(oo} (oo}
/ / fl@,y)dody =1
— 0o — 0o

Example 20.7 Let A be a subset of the plane. How can we find the probability
P((X,Y) € A)? If f is the joint density function of X and Y, then

PEY) ) = [ [ fag)dyds
A
For example if we consider the joint density function

2x+2y) fO<z<l, 0<y<l1

Flz,y) = { 0 elsewhere (20.1)

then for the set A = {(z,y) € R? : 2 < 1/2, y < 1/2} we have

9 /2 r1/2 1
P(X<1/27Y<1/2):§/ / (2 +2y) dy do =
0 0

If the joint density function is given, how can we find the density of X or
Y alone? It can be shown that if fx denotes the density of X, then for every
point x

fx@ = [ sy
and analogously

= [ T ) de

for every point y.

Definition 20.8 The functions fx and fy are called the marginal densities
of the joint density function.
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Example 20.9 For instance in the case of the joint density in the previous
example

00 12(I+2 )d if 0 1
_ _ 03 y)ay 1w0<zr <<
fx(x) /700 flz,y)dy { 0 elsewhere

The marginal density of Y in a similar way

1 .
_ s(y+1) ifo<y<l1
Fr () { 0 elsewhere

20.4 Independence

Definition 20.10 Let X and Y be random variables with joint cumulative
distribution function F. Denote by Fx and Fy the marginal cumulative distri-
bution functions of X and Y respectively. We say that X and Y are independent,
if

F(z,y) = Fx(x) - Fy(y)
for all real numbers =z, y.
In other words we may say that X and Y are independent, if
P(X<z,Y<y)=PX<z) PY <vy)

for all real numbers z,y. Now we reformulate this definition for the discrete and
for the continuous case.

Let X and Y be discrete random variables with joint distribution
P(X =z;,Y =y) = pir i=1,2,... k=1,2,...
Consider the marginal distributions of X and Y:

PX=uz)=p i=12,... PY=y)=q. k=12,...

Theorem 20.11 X and Y are independent if and only if
Pik = Pi " 4k

for all indices i and k.
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Our theorem states that the random variables are independent if and only if
their joint distribution can be expressed as the product of the marginal distri-
butions. For instance in Example 20.4 the variables are not independent, since
for the very first element

0.17-0.35 = P1-q1 75 P11 = 0.1 s

VERIFY!

Now let X and Y be continuously distributed random variables with joint
density function f. Denote by fx and fy the marginal densities of X and Y
respectively.

Theorem 20.12 X and Y are independent if and only if

f(z,y) = fx () fy(y)

for every real x and y.
Proof. Easily follows from the equality F(z,y) = Fx(z) - Fy (y). O

Example 20.13 In Example 20.1 the random variables are not independent,
since

i.e. the joint density cannot be expressed as the product of the marginal densi-
ties.

However, if the joint density of X and Y is given by

|4y ifO0<2z<l, O0<y<1
flz,y) = { 0 elsewhere

then X and Y are independent. Indeed

2z f0<az<1

o 1
fx(x) :/_ f(x,y)dy:/o 4:vydy:{ 0 elsewhere .

and by the symmetry of f the marginal density fy has the same form with
respect to y. Thus

f(@y) = fx(2) - fr(y)

for all real numbers x and y.
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20.5 Conditional distributions

Consider the discrete random variables X és Y with joint distribution P(X =
i, Y = yr) = pik, where i =1,2,...and k =1,2,.. ..

Definition 20.14 Suppose that for a specific index k we have P(Y = y;) > 0.
Then by the conditional distribution of X under the condition Y = y;, we mean
the distribution

P(X =x;,Y =yi)

i=1,2,...

ATTENTION! Verify directly that we really have defined a distribution!

Definition 20.15 By the conditional expected value of X under the condition
Y = y; we mean the sum

E(X|Y =yp) =) 2 P(X = z;]Y = )
i=1

that may consist of finitely many or infinitely many terms depending on the
range of X (this is why we do not indicate the upper bound of the summation).

Example 20.16 Let us examine again the joint distribution in Example 20.4.
Then P(Y = 1) = 0.32, and the conditional expected value of X under the
condition Y =1

E(X[Y=1)=0-004+1-02+2-0.08+3-0=0.36

Verify this calculation!

Recitation and Exercises

1. Reading: Textbook-2, Section 3.4

2. Homework: Textbook-2, Exercises 3.39, 3.40, 3.41, 3.42, 3.43, 3.45, 3.47,
3.49, 3.50, 3.51, 3.52 and 3.53

3. Review: Calculus, integration, improper integrals and infinite series, and
"Probability Exercises"
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Covariance and correlation

21.1 Mean of a sum

Tétel 21.1  If the random variables X and Y both have a mean, then so does
X +Y and
EX+Y)=EX)+E(Y)

Proof. We give an outline of the proof in the discrete case, the continuous
case is analogous.

E(X+Y) = > > (@+uy)P(X =2,V =y
i k

= sz Zpik + Zyk Zpik
k k i

%

= inP(X:xi)+ZykP(Y:yk):E(X)+E(Y) 0
i %

This theorem remains true for a sum with a finite number of terms (use
induction!).

Example 21.2  Suppose that on n pieces of cards we wrote the integers
1,...,n, and then placed them in a hat. We choose m pieces of cards from the
hat at random, with replacement. Let X denote the sum of the integers. Find
E(X).

The distribution of X in that problem is hard to find. Give it a try!

Denote by Xj,...,X,, the numbers selected. In view of the selection with
replacement, each X, is identically distributed, namely:
1
P(Xy=1i)=— i=1,...,n
n
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This means that for every k

.1 nam+l) 1 n+l
E X == - — = P .
(X) ;Z n 2 n 2
On the other hand, clearly X = X; + ...+ X,,,, and therefore
n+1
2

E(X)=E(X))+...+ E(Xpn) =m

Thus E(X) can be found without even knowing the distribution of X!

21.2 Mean of a product

If the discrete random variables X and Y, then
B(XY) =Y ik - pir
ik

where the range of X is {z1,22,...}, and the range of Y is {y1,y2,...} respec-
tively, and p;; denotes their joint distribution.

In a conpletely similar way, if X and Y continuously distributed, both have
a mean, and their joint density function is f, then

E(XY) = /_0; /_ny~f(x,y)dxdy

Theorem 21.3 If X and Y are independent, then

E(XY)=E(X)-E(Y)

Proof. We just focus on the continuous case, the discrete case can be treated
similarly.

E(XY) = /

[xy~f<x,y>dwdy:[ [ vy fx(@) - fy (y) de dy

/_ rfy () de- /_ yfy () dy = E(X) - B(Y)

since the independence implies that the joint density is the product of the
marginal densities, i.e. f(x,y) = fx(z)- fy(y). O
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21.3 Variance of a sum

Theorem 21.4 Assume that X and Y are independent, and they both have a
variance. Then
Var(X +Y) =Var(X) + Var(Y)

The statement can be extended to any finite number of terms.

Proof. Exploit our theorem about the mean of the product, then we get:

Var(X +Y) = E(X+Y -E(X+Y))?%
= BE(X -EX))*)+E(Y -E(Y))?
F2E((X - E(X))(Y — E(Y)))
= Var(X)+Var(Y)+2(E(XY) - E(X)E(Y))
= Var(X)+Var(Y). O

Example 21.5 Why do we think that by repeatedly performing an experiment
and taking the average of the results we can expect a more accurate result?

Let us suppose that for determining an unknown quantity m we perform n
observations, and the results are the random variables X3,..., X,. We assume
that the variables are independent and identically distributed with

E(Xy)=m, DXy)=0, k=12,...,n.

The assumption that all variables have the same distribution means that the
observations (measurments) are carried out in the same circumstances. Then o
is interpreted as the expected error. Take the arithmetic average of our results,
i.e. introduce the random variable

Then clearly E(Y,,) = m, moreover, according to our theorem above

1 1 9 o2
Var(Y,)=Var ( =(X1+...+ X,) | = 5n-0" = —.

n n n
as a consequence of independence. Thus, for the standard deviation of Y,, we
obtain:

D(Y,) = —

for which D(Y;,) — 0 as n — oco. Hence, the expected error tends to zero, when
n approaches infinity.
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21.4 Covariance and correlation

The following concepts are used for measuring the degree of dependence of
random variables.

Definition 21.6 The covariance of random variables X and Y is defined by
Cov(X,Y) = E((X — E(X)) - (Y — E(Y)))
and their correlation coefficient is given by

Cov(X,Y)

Corr(X,Y) = DX) DY)

As it is easy to see
Coo(X,Y)=EXY-EX)Y-EY)X+EX)EY))=EXY)-E(X)E(Y),

and most of the time, this simpler expression is used to evaluate the covariance.

The covariance is NOT an absolute measurment of the in dependence, since
for any a # 0 we have

Cov(aX,Y) =aCov(X,Y)

so it dependends on the dimensions . Just think of the case when X and Y are
costs given in Euro, but if we convert them to Forint, then their covariance will
change to approximately 340% times higher. However, the correlation coefficient
is independent of the dimension, since for any real numbers o # 0 and 8 we
have:

Corr(aX + ,aY + ) = Corr(X,Y)

which means that the correlation is independent of linear transformations. AT-
TENTION! Verify this equality directly by the definition!

Theorem 21.7
1. -1 <Corr(X,Y) <1

2. If X and'Y are independent, then Cov(X,Y) =0

Proof. For proving the first statement, take a real number ¢ € R arbitrarily,
and consider the random variable

W = [X — B(X) + (Y — E(Y))]?
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Since W is nonnegative, so is its mean. This means that
E(W)=E((X — E(X))*) +2tCov(X,Y) + t*E((Y — E(Y))?) > 0

for every real number t. This expression is quadratic with respect to t, and
therefore it can only nonnegative, if its discriminant is nonpositive, that is:

4Cov(X,Y)? —4B((X — BE(X))>)E((Y — E(Y))?) <0.
Rearranging the terms, and taking the square root of both sides, we get:
Cov(X,Y)| < D(X)D(Y)

The second statement is an immediate consequence of Theorem 21.3. (]

Example 21.8 ATTENTION! The example below shows that the converse
of the second statement of our theorem is not true! Toss a coin twice in a row,
and introduce the random variables:

Y, — 0 if toss k is a Head
=Y 1 if toss k is a Tail

(k=1,2). Consider the variables Y7 = X + X5 and Y5 = X; — X5. Then their
joint distribution is:
\Y1| 0 1 2
—1 0 025 O
01025 0 0.25
1 0 0.25 0

By examining the joint distribution, we see that Y; and Y5 are not independent,
but we can easily calculate that Cov(Y1,Ys) =0

21.5 Theorem of Total Expectation
Consider the discrete random variables X and Y that have a joint distribution

P(X = z;,Y = yr) = pir, and P(Y = yg) > 0 for all indices i = 1,2,... and
k=1,2....

Definition 21.9 Create the conditional expected values of X under the con-
ditions Y = g, that is:

mp = E(X[Y =y) =Y 2 P(X = 2|V = yy)
1=1

for every kK = 1,2.... This sequence is called the conditional expectation of X
with respect to the variable Y. Its notation is E(X|Y).
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Observe that this way we have defined a random variable, namely
EX|Y)=mg, ha Y=y, k=12,...

Below we determine the mean of this random variable. This result can be
regarded as the generalization of Theorem of Total Probability.

Tétel 21.10 (Theorem of Total Expectation) E(FE(X|Y)) = E(X).

Proof. Indeed,
E(E(X]Y)) = kap YV =yp) =YY aiP(X =iV = yp) P(Y = )

k=11=1
Z%ZP =ux;,Y = y) le =ux;) = E(X)
1=1

since, in the second line, we obtain precisely the marginal distribution of X. [J
ATTENTION! Why can we interchange the sums in the second line?

Example 21.11 In some situations it is easier to find F(X) by our theorem
than by the direct approach. The number of calls received by a call center on
a given day has Poisson distribution with a parameter A > 0. Every call is a
wrong number with a given probability p > 0, independently from each other.
Find the expected value of the wrong number calls on that day.

Let X denote the number of wrong calls, and Y the total number of calls.
It is clear that for any fixed n € N under the condition ¥ = n we face the
Bernoulli-experiment. Therefore,

P(XkYn)(Z)pk(lp)”k if n>k

while P(X = k|Y =n) =0, if n < k. Hence, the conditional expected value is
given by
m, =E(X|Y =n)=np, n=12,...

Making use of the Theorem of Total Expectation, we obtain
E(X) = E(E(X|Y)) an—e A= )p

ATTENTION! Find E(X) directly by using the distribution of X as well!

Recitation and Exercises

1. Reading: Textbook-2, Sections 4.1, 4.2 and 4.3.

2. Homework: Textbook-2, Exercises 4.23, 4.24, 4.52, 4.59, 4.60, 4.64, 4.70,
4.98.

3. Review: "Probability Exercises"



Chapter 22

Sums of random variables

22.1 Sums of discrete variables

Assume that X and Y are independent variables, and both have Poisson-
distribution, with parameters A > 0 and p > 0 respectively. Find the dis-
tribution of X 4+ Y. Then for any fixed integer k

k k
P(X+Y =k = Y PX=iY=k—i)=) P(X=i) P =k—i)
1=0 1=0
k k
N, e () K\ i k—i

N Zze (k—z)'e R Z i A'n
1=0 1=0

A Ew” o~ Ot)

- k!

by the independence. Thus, X +Y has Poisson-distribution with the parameter
A+ p.
Using induction, this result can be extended to any finite number of terms.

Tétel 22.1  Assume that Xq,...,X, are independent variables, and have
Poisson-distribution with parameters \1,..., A\, respectively. Then the random

variable
Y,=X1+...+ X,

has Poisson-distribution with parameter Ay + ...+ \,.

22.2 Sums of continuous variables

Let X and Y be independent, continuously distributed random variables with
density functions f and g respectively. Denote by F and G their cumulative
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distribution functions. Let H denote the cumulative distribution function of
X 4+Y. To find H pick a real number 2 € R. Then (sketch a picture!):

[0 @asds= [ [ ssjate)aas
/Oof(S)(/ dt)ds_/ F(5)G(@ — 5) ds

By taking the derivative of H, we get the density function h of X +Y

0= [ felgte = s)ds

This formula is called the convolution integral of f and g.

ATTENTION! Differentiating the integral is not straightforward! Examine
this rule in some simple cases!

Example 22.2 Suppose now that X and Y are independent random variables
that are uniformly distributed on the interval [0, 1]. Then (X,Y) is uniformly
distributed on the unit square of the plane. By sketching a picture, show that
if h stands for the density function of X + Y, then

T ifo<z<1
h(z)=¢ 2—2z hal<z<2
0 elsewhere.

Example 22.3 Let X and Y be independent, exponentially distributed ran-
dom variables, both with parameter A > 0. Let h denote the density function
of X +Y. If f denotes the density function of the exponential distribution with
parameter A, then the convolution integral is:

/ F(8)f(z — s) ds

Behind the integral sign f is zero on the negative part of the real line. Therefore,
the integrand is not zero if and only if s > 0 and z — s > 0, that is 0 < s < .
Thus,

xr x
h(z) = / N A ME=s) gg — )\2/ e M ds = N2ge
0 0
for any given x > 0, since the last integrand does not depend on s.

By using induction, we can extend the above result to any finite number of
terms.

Theorem 22.4  Assume that X1,..., X, are independent, exponentially dis-
tributed random variables with the same parameter A > 0. Let h, denote the
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density function of the random variable
Y,=X1+...+ X,

Then

if £ >0, and hy,(z) =0, if x <O0.

22.3 The Poisson process

In this section we describe a deeper relationship between the exponential and
the Poisson distributions.

Consider the random variables T1, T3, ... which mean waiting times between
consecutive "occurances".

We can think of times between successive vehicles on a highway, times be-
tween incoming claims received by an insurance company, waiting times between
consecutive clients at a customer service desk, time intervals between incoming
calls to a call center, etc.

Assume that T7,T5, ... independent, exponentially distributed random vari-
ables with identical parameter A > 0. The smaller the value of A, the longer are
the expected waiting times (check the expectation!). The memoryless property
of the exponential distribution means that the waiting time is independent on
how long we have been waiting before.

Set Sy = 0 denote by

S,=T+...+T,

the total waiting time until the n-th occurance. For a given ¢ > 0 the event
{5, <t}

means that the n-th occurance arrives before ¢t. This means that the number of
occurances in the time interval [0,¢] is at least n.
Denote by N(¢) the number of occurances in the time interval [0, ¢], then the

events
{N(t) =z n} = {5 <t}

coincide. For every t > 0 we defined a random variable N (t), this correspondence
is called the Poisson process.

How can we find the distribution of N(t) for a fixed ¢t > 07 The event that
there are exactly n occurances in the time interval [0,¢] is given by

{N@t) =n} ={S <t} N {1 <t} ={9 <t < Shp1}.
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Clearly {S,+1 <t} C {S, < t}, and this implies
P(N(t) =n) = P(S, <t) = P(Sp41 < 1).

Let h,, be the density of S, and h, 41 be the density of S,,+1. Since 71,75, ...
are independent, exponentially distributed random variables with the same pa-
rameter A, then in view of Theorem 22.4 of the previous section we get

An+1
n!

xne—Ax

A™ nel
hn(z) = = 1)!95’ Lem2 and  hpyq(z) =

for every x > 0. Therefore

PN(t) = n) = P(Sy < t) — P(Sns1 < 1) = /0 o () da —/O 1 () d

Evaluate the first integral on the righ-hand side by integration by parts:

t )\n t
/ hn(x)de = ' / 2" e A dy
0 (n—=1)!Jo

n n t n t ,..n
= At [me_m} +/\7'/ T \e T dg
! Jo

m=1D!'|n o (m—1 n
At)" N
= GV e My [ 2"eMd.
| |
n! nl Jo

We can recognize that in the last integral we pecisely have h, 1. Hence,

P(N(t)=n) = (/\;')n e M

Theorem 22.5 In the Poisson process the number of occurances in the time

interval [0,t] is a Poisson random variable with parameter \t.

22.4 Sum of standard normal distributions

Let Z; and Z5 be independent, standard normally distributed random variables,
and find the distribution of their sum:

Y =271+ 2%

Now, the convolution integral is
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where h is the density function of Y. Then
1 o 1 22 ©©
h(z) = 5= e 2o @92 gg = —e’T/ e ds
2 J_ o 2m oo
—= /OO o—(s=2/2)? g

The last integral is precisely the Gauss integral, whose value is /7, thus

1 o2
hr)=—=e"1T —oo<z<

_ ie—%/ o (s—a/2)? o?ja gy _ L
2m oo 2m

This is exactly the density function of the normal distribution with parameters
m =0 and o = V2.

Using completely analogous arguments, we can formulate the following re-
sult.

Theorem 22.6 Let Z,...,Z, be independent, standard normally distributed
random variables. Then' Y = Zy + ...+ Z, is a normally distributed random
variable with parameters m = 0 and o = \/n.

22.5 Central Limit Theorem

Imagine the following experiment. To determine an unknown quantity m we
carry out n independent observations (measurments). To approximate the un-
known quantity we use the arithmetic mean (average) of the n outcomes.

Let us denote the outcomes by X7,..., X,, and assume that they are inde-
pendent and identically distributed random variables with

E(Xy)=m, DXy =0, k=12,...,n

(Identical distribution means that the observations are performed in identical
circumstances.) For the stantardized average let us introduce the following
notation: .

a/vn

Then Y,, has a mean of 0 and standard deviation 1.

Y, =

It was the amazing discovery of the Russian mathematician Alexandr Lya-
punov and the mathematics of his time (early 20-th century) that the distribu-
tion of this variable Y;, converges to the standard normal distribution.

Tétel 22.7 (Central Limit Theorem) Under the above conditions let F,
denote the cumulative distribution function of Y,. Then for every x € R we
have

lim F,(z) = ().

n—oo
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Example 22.8 On a given day the number of visitors to a local convenience
store is 100. Every visitor buys something with probability p = 0.2 (indepen-
dently from each other). Find the probability that on that given day the the
number of purchases will be between 15 and 25.

Let X be the number of purchases. Then X is binomially distributed
(Bernoulli-experiment!) with parameters n = 100 and p = 0.2. For each visitor
introduce the following notation:

X, — 0 if does not buy anything
71 1 if buys something

then X = X1 4+ ...+ X100 and the terms are independent random variables. It
is easy to see that for each k we have E(X}) = 0.2 and Var(X}) = 0.16, hence
D(X}) = 0.4. Therefore,

5 X-20 5
P(l1b< X <25 = P|—= —
(15 < X < 25) (4< 1 <4)
5 L()(1‘f'.-.-|-)(10())—0.2 5
— P = 100 e
( 1= 0.4/10 <1

Making use of the Central Limit Theorem

P (15 < X < 25)

%

$(1.25) — ®(—1.25)
26(1.25) — 1 = 0.7888

by looking up the number in the table for the standard normal distribution, see
Textbook-2, page 736 (Appendix A).

Recitation and Exercises

1. Reading: Textbook-2, Sections 6.5 and 6.6.
2. Homework: Textbook-2, Exercises 6.24, 6.26, 6.29, 6.34 and 6.38.

3. Review: "Probability Exercises"
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Law of Large Numbers

23.1 Chebyshev’s Theorem

So far we have had to determine probabilities of the form
Pla< X <b)

This is easy to do if the distribution of the random variable X is known. In
particular, in the case of a discrete variable we get

Pla<X <b)= Y PX =)

a<xp<b

while for a continuously distributed variable

P(a<X<b)/bf(x)da:

where f is the density function of X. However, there are situations when this
procedure cannot be completed. Namely, if

1. either the distribution of X is not known,

2. or the distribution of X is known, but too complicated to use.

In cases like these, we can be satisfied with an appropriate estimate on the
given probability. This estimate is provided by Chebyshev’s Theorem. Consider
a random variable X that has a mean and a variance.

Theorem 23.1 (Chebyshev’s Theorem) The mean of X is E(X) =m and
its standard deviation is D(X) = 0. Then

1
P(X —m| <k-0) 21—
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for any k > 0.

Proof. We present the proof for a continuously distributed random variable.
In the discrete case the proof can be carried out in a completely analogous way.
Let f be the density function of X, then

o’ = /OO (x —m)?*f(z)dx

— 00

If £ > 0 is given, then the value of the integral on the right-hand side will not
increase if we skip the interval [m — ko, m + ko]. In fact:

m—ko 0
o? > / (x —m)?f(z) d:v+/ (x —m)?f(z)dx (23.1)

—0o0 m-+ko

since the integrand is nonnegative. On the other hand, at every point x of the
interval (—oo, m — ko] we have (x —m)? > k%02, and hence

m—ko m—ko
/ (x —m)?f(z)dx > / k202 f(x)dx > k*0*P(X <m — ko).

— 00 — 00

Completely similarly, at every point x of the interval [m + ko, c0) we get (z —
m)? > k%02, and consequently

/ (x —m)?f(z)dx > / k202 f(x)dx > k*0?P(X > m + ko).
m+tko m+ko

If we combine the latter two inequalities with the inequality (23.1), then we
obtain
0% > k*0?P(X <m — ko) + k*0*P(X > m + ko).

Dividing both sides with the positive expression k%02 we get

1

= >P(X<m—ko)+P(X>m+ko)=P(|X —m|>ko).

By converting to the complement event, the proof is completed. O

Note that the theorem gives an irrelevant result if & < 1, so we apply the
inequality only for k£ > 1.

Example 23.2 For instance, if the distribution of the random variable X is
not known, but its mean E(X) = 8 and its standard deviation D(X) = 2 are
given, then

P2<X <14)>1— = ~0.8889

Q| =

since in this case k = 3.
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23.2 Chebyshev’s Theorem in equivalent form

Sometimes it is more covenient to use Csebishev’s Theorem in the following
form:
Var(X)

P(X - B(X)[<e)>1-—

where € > 0. Indeed, this inequality is equivalent to our theorem by setting
k-D(X)=e >0, and then

1 Var(X)

K2 &2

Let us formulate the theorem in the following equivalent form.

Theorem 23.3 Consider a random variable X with a mean E(X) =m, and
standard deviation D(X) = o. Then for every fized £ > 0 we have

2

P(X —m|<e)>1-— % (23.2)

Example 23.4 On a given day a call center receives 2000 incoming calls.
Every call is a wrong number with probability 0.002 (independently from each
other). Find the probability that on that given day there are at most 8 wrong
number calls.

Let X denote the number of wrong number calls. Clearly X is binomially
distributed (Bernoulli experiment!), with parameters n = 2000 and p = 0.002.
The solution to our problem is:

8
PX <8 -3 (zokoo

)0.002’“ - (0.9982000—F
k=0

which is not easy to evaluate (although the distribution is known).

However, we can give a reasonable estimate by using Chebyshev’s Theorem.
Now m =4 and 0? = 4-0.998 ~ 4, and therefore

4
P(X <8)=P(X —4[<5) 21— - =084
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23.3 Poisson approximation

Example 23.5 In a large hospital with 2000 beds, the probability that a
patient needs intensive care is 0.002 on any given day (independently from each
other). The director wants to establish a new emergency ward so that if a
patient needs intensive care, must get a bed with probability of at least 0.99.
What should be the size of the emergency ward with minimal cost (smallest
number of beds)?

Let N denote the number of beds in the emergency ward, and X be the
number of patients who need intensive care on a given day. Then X is clearly
binomially distributed (Bernoulli experiment!) with a mean of m = 4 and
variance 02 = 4 -0.998 ~ 4. Then the inequality

Y (2000
P(X<N)=>" ( )0.002’“0.9982000’“ > 0.99
k
k=0
has to be solved for the smallest N (which means the lowest cost).

This is the situation when the distribution of X is known, but too compli-
cated to use. Apply Chebyshev’s Theorem instead:

4
P(X —4[<e) 21~ 5 =099

The lowest solution is € = 20 and therefore N = 23 is obtained for the optimal
smallest number of beds in the new emergency ward.

Chebyshev’s Theorem is true for any distribution, so we cannot expect a
very sharp estimate. We can get a much more accurate solution if we apply the
Poisson approximation. The theorem on how to approximate the binomial dis-
tribution by the Poisson distribution is discussed in Section 18.5. In particular,
in the present example:

Y. /2000 N gk
0.002%0.9982090~F ~ y * ¢4
> () o
since "n = 2000 is large enough, and p = 0.002 sufficiently small", moreover
np = 4. When we look at the Poisson tables (see Textbook-2, page 732, Ap-
pendix A) we can see that the sum on the right-hand side exceeds 0.99 at
N = 9. Based on this approximation we claim that even an emergency ward
of size N = 9 fulfills the criteria. (Examining how sharp this approximation is,
goes beyond the scope of this book.)

23.4 Law of Large Numbers

We carry out an experiment n times in a row (independently from each other)
and each time we observe whether or not a given event A occurs (Bernoulli
experiment).
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Suppose that the probability of the event A is P(A) = p (where 0 < p < 1)
and let X,, be the number of experiments in which A occurs. The quotient
X, /n means the relative frequency of the event A.

We want to examine whether the relative frequency converges to the real
value of the probability when the number of experiments is increased that is
n — 0o?

From theoretical point of view, this question is of fundamental importance.
If the answer is affirmative, it justifies our axiomatic approach to probability.
Indeed, within the framework of our theory that we have developed from the
axioms, we are able to derive a theorem that can directly be verified in reality.
In other words, our axioms are set properly, and their consequences reflect real
phenomena.

As is well known, X,, is binomially distributed with parameters n and p
paraméterekkel. Pick a number € > 0 and apply Chebyshev’s Theorem:

X,
P(‘ L —p’ 25) = P(|X,, — np| > ne)
n

Since F(X,,) = np and Var(X,,) = np(1 — p), we get

np(l —p)

P(|X,, —np| > ne) < -y

We have p(1 — p) < 1/4 for any real number p, so from here
Xn
P ( — - p’ > 6) <

n
if n — 0o. We formulate this result in the theorem below.

—0

4ne?

Theorem 23.6 (Bernoulli’s Law of Large Numbers)

lim P (
n—oo

— —-pl<e] =1
n

for every e > 0.

This theorem is sometimes called "Bernoulli’s Weak Law of Large Numbers"
to distinguish it from more advanced and complicated "Strong Law" results.

Example 23.7 A consulting agency makes a forecast of the support of a
political party before the upcoming parliamentary election. They interview
potential voters about their preferences. The agency wants to be 90% sure that
their prediction should be within the 1% margin (i.e. the difference between the
predicted ratio and real ratio is less than 1%). How many people have to be
interviewed?
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Let 0 < p < 1 denote the unknown real ratio (the real support of the party),
this will be estimated by the relative frequency. Assume that the size of sample
(number of interviews) is n (yet to be determined) and X,, is the number of
voters who support the party. Then the anticipated support ratio is X, /n.

This is a Bernoulli experiment, therefore X,, is binomially distributed with
E(X,) =np and Var(X,) = np(1 — p). Then the following inequality holds:

1

S pl<o0l) 1o
p'— )— n 10

p(X

n

If the agency wants to guarantee this accuracy with at least 90% certainty, then

1 1
4n - 104

from which we have n = 25000.

In reality, using advanced statistical methods, even a smaller sample might
be sufficient. However, in most situations it is hard to guarantee that the set
of interviewed voters is homogeneous and representative (in the sense that the
sample ratio reflects the ratio for the whole voting society).

=0.90

Under the conditions of Theorem 23.6 the following stronger statement can
also be proven.

Theorem 23.8 Under the conditions of Theorem 23.6 we have

Xn
P(lim :p)zl
n—soo N

Intuitively, Theorem 23.6 claims that very likely the relative frequency gets
close to the probability p as n increases. However, it does not exclude that large
differences can occur beyond any arbitrarily large index n. It just says that such
large differences are unlikely. Theorem 23.8 tells us however, that such large
differences come with probability zero. (The proof is due to Lyapunov and to
Kolmogorov in a more general form in the 30’s of the last century.)

Recitation and Exercises

1. Reading: Textbook-2, Section 4.4.
2. Homework: Textbook-2, Exercises 4.75, 4.76, 4.77, 4.78 and 4.91.

3. Review: "Probability Exercises"
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Chapter 25

Vector spaces and subspaces

25.1 The vector space R"

Let n be a given integer. The set R™ is defined as the set of all n-tuples of real
numbers that is:

R*"=<(x= : 1xy, .., % ER

The elements of this set are called vectors, their components are called coor-
dinates. In a geometric interpretation this set for n = 2 means the plane, for
n = 3 it means the three dimensional space.

In the sequel, vectors are denoted by lower case latin letters, real numbers
(or scalars) are denoted by lower case greek letters.

For the vectors of the space R" we introduce the following operations:

Sums of vectors

T Y1 r1+
x = and y = then z +y = eR"

Vector multiplied by a scalar

I axy
ac€Rand z = : then ax = : cR"”

T axy,

159
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The set R™ equipped with these operations is called a vector space.

Definition 25.1 Consider the vectors ai,...,a; in the vector space, and let
a1, ...,qx be arbitrary real numbers (scalars). The vector

a1a + ...+ arag

is called a linear combination of the vectors ay,...,ak.

Example 25.2 For instance, if

2 3
ar = | —1 and ap = | 0 | further oy = 3 and ap = —2
3 4
then
0
a1aq + agas = -3
1

25.2 Subspaces

Definition 25.3 A subset M of the vector space R" is called a subspace, if

e for every x,y € M we have x +y € M, and

e for every x € M and o € R we have ax € M.

It is clear from the definition that a subspace always contains the zero vector
0. The smallest subspace is {0}, the largest subspace is the whole vector space.

Theorem 25.4 If M is a subspace, then for all vectors aq,...,ar € M and
all scalars aq,...,a; € R we have

aral + ...+ agar € M
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In other words: a subspace is closed for linear combinations. It is easy to
see that in the vector space R? the straight lines and planes that pass through
the origin are all subspaces.

Exampla 25.5 Consider the following subset in the vector space R™

T
M=<_z= ER" 21 +29=0

X n

Verify that M is a subspace.

Indeed, if z,y € M, then 21 + o = 0 and y; + y2 = 0, and hence, for the
first two coordinates of x + y we have (z1 +y1) + (22 + y2) = 0. This implies
r+ye M.

Similarly, if x € M and a € R, then equality x; + x2 = 0 implies that
a(xy + x2) = 0, therefore, ax € M.

It is easily visible that for n = 3 the subspace M above is a plane that is
perpendicular to the zy-plane and their intersection is the straight line with the
angle of —45° degree. CREATE A PICTURE!

On the other hand, if in the definition of M the sum z; + x5 were set to be
any number different zero, then M would not be a subspace. In that situation
the addition and the scalar multiplication may go out of M.

Theorem 25.6 The intersection of subspaces is again a subspace.

Proof. It is enough to prove the statement for two subspaces. The proof
for any number of subspaces can be carried out analogously.

Let L and M be subspaces. If x;y € LN M, then x +y € L and x +y € M,
because both are subspaces. Thus, x +y € LN M.

Similarly, if x € LN M and « € R, then ax € L and ax € M, because both
are subspaces. Consequently, ax € L N M. O

25.3 Generated subspace

In view of Theorem 25.6 we can speak about the smallest subspace containing
given vectors. This is formulated in the following definition.

Definition 25.7 The smallest subspace spanned by the vectors ai,...,ax is
denoted by

lin{ay,...,ar}
and it is defined as the intersection of all subspaces containing these vectors. It
is called the generated (or spanned) subspace.
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A subspace contains all linear combinations of its vectors. Since all linear
combinations already form a subspace, we come to the following theorem.

Theorem 25.8 The subspace generated by the vectors a1, ..., ax is the set of
all linear combinations
a1ay + ...+ apag

where ay, ..., € R.

Example 25.9 For instance, in the vector space R? consider the vectors

1 0
ar=1] 0 amday = | 1
0 0
then
T
lin{ay, a0} =< o= | 22 | €ER®:23=0
T3

i.e. the set of vectors whose third coordinate is zero. Please verify that this set
is really a subspace!

25.4 Linear independence

Definition 25.10 In the vector space R" the vectors aq, ..., a; are said to be
linearly independent, if the equality

a1al + ...+ agap =0

implies oy = ... = a =0.

In the opposite situation the vectors are called linearly dependent.

Linear independence is one of the most profound concept of algebra, it for-
mulates that a linear combination is zero ONLY if all coefficients are zero.

ATTENTION! The definition does not say that if all coefficients are zero,
then the linear combination is also zero. This is obvious! The implication is the
opposite.

In a collection of linearly independent vectors none of them can be expressed
as the linear combination of the others. This stated in the following theorem.

Theorem 25.11  The vectors a1, ...,a; are linearly dependent if and only if
one of them can be expressed as the linear combination of the others.
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Proof. If one vector, say a; can be expressed as the linear combination of
the others, then
a1 = Qa9 + ...+ agag .

Rearrange the equality, then we get
—a1 +asas + ...+ arap =0.

This shows that their linear combination is zero, although the first coefficient is
not zero. Hence, the vectors cannot be linearly independent.

Conversely, assume that the vectors are linearly dependent. Then there
exists a linear combination

a6, + ... +agar =0,

where not all coefficients are zero, say «; # 0. Then

that means a; can be expressed as the linear combination of the others. [J

Example 25.12 Consider the following vectors in R?

2 3 1
a1 = -1 a9 = 0 az = —2
3 4 2

and find out if they are independent.

Easy calculation shows that az = 2a; — a2, so the vectors are dependent.
The statements below follow easily from the definition. Verify them!

Theorem 25.13 Consider the vectors ay,...,ay in the vector space R™.

o If the vectors are linearly independent, then so is any subset of them.

o If the zero vector is an element of the collection, then they are linearly
dependent.

o If there are two identical vectors in the cellection, then they are dependent.

o If the vectors are linearly dependent, then any extension is dependent.

Proof. Just hints are given, detailed proof is a homework.

e Consider any linear combination of a subset, and insert the missing vectors
with zero coeflicients.
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e Consider the linear combination in which the zero vector comes with the
coefficient 1, and all other vectors with 0.

e Consider the linear combination in which the identical vectors come with
the coefficients +1 and —1 respectively, and all other vectors with 0.

e Consider a linear combination which is zero, but not all coefficients are
zero, and insert the vectors in the extension with zero coefficients.

Example 25.14 Suppose the vectors a, b and c are linearly independent. Is
it true that the vectors a + b, b+ ¢, ¢ + a are linearly independent as well?

Take a linear combination, and make it equal zero:
ar(a+b)+az(b+c)+ag(c+a)=0.
Rearrange the equality this way:
(a1 +ag)a+ (a1 + a2)b+ (e + as)c=0
Independence of a1, as, az implies that
art+az3=0 aj+a3=0 as+a3=0

The only solution of this system is vy = ags = a3 = 0. Thus, the vectors a + b,
b+ c és ¢+ a are linearly independent.

Recitation and Exercises

1. Reading: Textbook-1: Sections 12.1, 12.2, 12.3 and 14.1.
2. Homework: Textbook-1, Section 14, Exercises 1, 2, 3, 4, 5 and 7.

3. Review: "Linear Algebra Exercises
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Linear independence and
basis

26.1 Generating system

Definition 26.1 In the vector space R™ a collection of vectors aq,...,a; is
said to be a generating system, if

lin{ay,...,ar} = R",

i.e. all vectors of the space can be expressed as the linear combination of the
given vectors.

Example 26.2 Consider the following vectors in the vector space R?

1 0 3
a; = a9 = 1 az = —2
0 0 0

and decide whether or not they form a generating system.

We can easily see that the whole space is not spanned by these vectors, since
no vector with a nonzero third coordinate belongs to the span. These vectors
are not independent either, because as = 3a; — 2as.

On the other hand, the following set of vectors

1 0 0
e = 0 €y = 1 €3 = 0
0 0 1
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forms a generating system, since every vector x can be expressed this way:
T = T1€1 + Toeo + T3€3,

where x1, zo, 3 are the coordinates of z. It is easy to check that these vectors
are linearly independent as well.

Completely analogously, we can define the generating system of a subspace
M in the vector space R".

Definition 26.3 The vectors aq,...,a; form a generating system of the sub-
space M (or they span the subspace M), if every vector in M can be given as
the linear combination of the vectors aq, ..., ak.

26.2 Basis

Definition 26.4 A collection of vectors ai,...,a; is called a basis of the
vector space R™, if

e they are linearly independent,
e they form a generating system.

Quite analogously, we can define the basis of a subspace.

Example 26.5 As we have seen above, in the vector space R? the vectors

1 0 0
€1 = 0 €g = 1 €3 = 0
0 0 1

form a basis, as they are linearly independent and they span the whole space.
Similarly, the vectors

1 0 0
ayp = 1 ag = 1 az = 0
1 1 1

form a basis as well. (VERIFY!) However, the vectors

2 0
a; = 0 a9 = -1
0 0

do not form a basis, for they do not span the whole space (although linearly
independent).
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The following properties of a basis can be verified directly by the definition.

e A basis is a maximal linearly independent system.
e A basis is a minimal generating system.

e In a vector space every basis has the same number of elements. (ATTEN-
TION! NOT OBVIOUS.)

e In a vector space every vector can uniquely be expressed as the linear
combination of the basis.

Definition 26.6 The standard basis in the vector space R" is given by

1 0 0
1 0
€1 = €g = en =
0 0 1
and we always use the notation ey for these vectors (k= 1,...,n).

Verify that they really form a basis! In a certain sense this is the "simplest"
basis, since for every vector x we have

r=x1€1 + ...+ Tpey .

where z1,...,x, are the coordinates of x.

26.3 Dimension

Based on the properties of a basis, we can introduce the following definition.

Definition 26.7 The dimension of a vector space or subspace M is defined as
the number of elements in a maximal linearly independent system (i.e. a basis).
Its notation is

dim M

Example 26.8 In view of Example 26.6 for every integer n we have
dimR"™ =n

since ey, ..., e, is a maximal linearly independent system, i.e. a basis.
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Example 26.9 Consider now the subspace M spanned by the vectors

2 1 5)
a; = 2 ag = -1 az = 3
-3 1 -5

and find the dimension of M.

We can easily check that a; and as are linearly independent, but aq, as, as
are not, since
201 + a9 = as.

Therefore, the dimension of the generated subspace is
dim M = dimlin{a;,as,a3} = 2.

Of course, it is also true that dimlin{ay,as} = 2.

Definition 26.10 The rank of a collection of vectors aq,...,a; is defined as
the dimension of the subspace spanned by the given vectors. Notation:

rank{ay,...,ar} = dimlin{ay,...,ar}.

26.4 Gauss-Jordan-elimination

In this section we exhibit a very simple but powerful procedure to check quickly
if a collection of vectors is linearly independent.

Consider a vector a in the vector space R™ that can be given in the form
a=aie1+...+ane, (26.1)
in the standard basis. Consider another vector b with
b= pie1 +...+ Bpen, where [y #£0. (26.2)

QUESTION: What linear combination will express the vector a, if we use the
basis b, e, ..., e, instead of the standard basis, i.e. the vector e; is replaced by
the vector b7

REMARK: As we see, the condition 5; # 0 implies that the collection
b,ea,...,e, is a basis. Indeed, on the one hand, it has n elements, on the
other hand b is independent of the others (i.e. to express b we need the vector
e1 as well).
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Isolate the vector e; from the equality (26.2) the we get:
Py
g

and replace e; by this expression in equality (26.1). After rearranging we have
that

a = %b + (a2 - alﬂ2> €9 + e + (an - alﬂﬂ) €n - (263)
1

B B p1
This procedure, called Gauss-Jordan-elimination, provides the expression of
vector a with respect to the new basis b, eq, ..., e,.

Example 26.11 Using Gauss-Jordan-elimination decide if the vectors

1 2 3
a = —1 b: ]_ CcC = 3
2 -1 —4

are linearly independent. This process is as follows:

1] 2 3] 2 3|4
-1 1 3|[3] 6| 2

2 -1 —4|-5 -10 0

The calculation shows that the vectors are not independent. In particular,
we obtain that the vector ¢ can be expressed in terms of a and b, namely
¢ = —a + 2b. Thus, the rank of the collection a, b, ¢ is 2, in other words

dimlin{a,b,c} = 2.

Example 26.12 Consider the following vectors in the vector space R*

1 2 —1 1
0 1 -2 1
a; = _1 a9 = 0 asz = _3 ay = 1
2 —1 8 3

and find the dimension of the subspace M spanned by the vectors a1, as, as, aq
M =lin{ay,as, a3, a4}

Carry out the Gauss-Jordan-elimination process for the given vectors, then

we get
2 -1 1] 2 -1 1| 3 -1
0 1 -2 1 -2 1]-2 1
-1 0 -3 1| 2 -4 2| 0 0
2 -1 8 -3|-5 10 -5| 0 0
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The result tells us that the vectors as and a4 linearly depend on the vectors aq

and as, specifically
az = 3a1 — 2&2

and
a4 = —ay + as

Consequently, the maximum number of linearly independent vectors in the sys-
tem of vectors ai,as,as,as is 2, namely a; and as. Therefore, we deduce that

dim M = dimlin{ay, as,a3,a4} = 2.

Recitation and Exercises

1. Reading: Textbook-1, Sections 12.1, 12.2, 12.3 and 14.1.
2. Homework: Textbook-1, Section 14, Exercises 1, 2, 3, 4, 5 and 7.

3. Review: "Linear Algebra Exercises
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Linear mappings and matrices

27.1 Linear mappings

Let n and m be integers and consider the vector spaces R"™ and R™ (with
dimensions n and m respectively).

Definition 27.1 The map A : R"™ — R™ is called a linear map if
o Alz+y) = Az + Ay
o Alax) = aAx

for all vectors x,y € R™ and every scalar o € R.

If n =m, i.e. A maps the vector space into itself, then A is called a linear
transformation.

We can easily check the following properties of a linear map:

o Alax + By) = aAx + BAy for all vectors z,y and scalars «, §.

e A0 =0, that is the image of the vector 0 is always the vector 0.

Example 27.2 Below we define some mappings that map the plane R? into
itself.

1. Let A be the map that associates with every vector x its A-multiple, i.e.
Az = x (A € R).

2. Let A be the map that associates with every z reflection with respect to
the horizontal axis.
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3. Let A be the map that associates with every vector its projection onto the
straight line y = x (the 45° line bisecting the right angle).

4. Let A be the map that associates with every vector its rotation around
the origin by the angle ¢ (in positive direction).

In each of the above examples show that A defines a linear transformation
of the plane R? (i.e. fulfills both equalities). CREATE PICTURES!

27.2 Matrix of a linear map

In this section we take advantage of the simple fact: given a linear map, if we
know the images of the basis vectors, then we can calculate the images of all
vectors.

Indeed, let a linear map A : R™ — R™ be given, and consider the standard
basis eq, ..., e, in the vector space R™. If we pick any vector z € R", then x is
given in the standard basis:

r=2x1€]1+ ...+ Tpey.
Apply the map A on both sides, then by the linearity

Ax = x1Aey + ...+ x,Ae,,

that means for Az we only need the images Aey, ..., Ae,.
Let us denote by f1,..., fin the standard basis in the vector space R™, then
we can express the vectors Aeq, ..., Ae, this way:
Aer = anfitaafot+...+amifm
Aes = ainfi+anfot...+amafm
Ae, = a1nf1 + aonfo 4+ ...+ Gmnfm

If we now collect the coefficients in these equalities in chart, we obtain a matriz
of size m x n. That is called the matriz of the linear map A:

a1 a2 e QA1n

a921 a9 e a9n
A =

Am1 Am2 ceo Qmn

that consists of m rows and n columns. The j-th column of the matrix is the
vector Ae; in the standard basis f1,. .., f,, of the space R™. Thus, we can obtain
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the image Ax of the vector z by multiplying the matrix A by the coordinates
of = this way:

a1 a2 ... Qin X1 a11T1 + ...+ a1nTn
a1 Q22 ... Q9n T2 211 + ...+ a2pTy

Az = : - _ (27.1)
Uml Am2 .. Qmn T Am1T1 + ... + GmnTn,

i.e. the product Az is a vector with m coordinates in the space R™.

Clearly, every linear map has a matrix representation in given bases. Con-
versely, it is also evident that the equality (27.1) defines a linear map on the
vector space. We conclude that there is a one-to-one correspondence between
linear maps and matrices.

ATTENTION! In the rest of this book we are not going to make a differ-
ence between linear maps and their matrices.

Example 27.3 Consider the linear transformations introduced in Example
27.2. Their matrices in the standard bases are (in this order):

1.A—H 2] Q'A—[(l) _H 3'A_“g ig}

4 A— { cosyp —sing }
sin ¢ cos

Use pictures to verify these results!

27.3 Rank and degree of freedom of a matrix

Definition 27.4 Consider a linear map A : R — R™ (i.e. an m x n matrix).
The range of A

imA={y €R™: van olyan x € R", hogy y = Az}
is called the image of A, and the set
ker A ={z € R": Az =0}

is called the kernel of A. It is easy to see that both ker A and im A are subspaces
in the vector spaces R™ and R™ respectively.

In view of the definition the subspace im A is the subspace of vectors that
can be expressed as the linear combinations of the columns of A. In other words,
if aq,...,a, denote the columns of A, then

imA =lin{ay,...,an}.
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Quite similarly, ker A is the subspace of those vectors z for which
Ar =x1a1 + ... +xpa, =0,

where z1,...,z, denote the coordinates of x.

Example 27.5 Consider the following matrix A

1 3 1

A= -2 1 5

2 2 =2
and denote the columns by a1, as and a3. Using Gauss-Jordan-elimination we
see that the columns are not independent, since a3 = —2aq + ao. Therefore, the
image of A (i.e. the subspace spanned by the columns) is:

im A =lin{aj, a2} .

On the other hand, if we rearrange the equality above, we get

—2a1+a2—a3:0.

This tells us that

-2 -2
ker A = lin 1 =<t 1 |eR3:teR},
-1 -1

that is, all these vectors multiplied by A result in zero vector.

Definicié 27.6 The rank of an m x n matrix A is defined as the dimension
of its image, that is:
rank A = dimim A

which is equal to the maximum number of linearly independent columns of A.
The degree of freedom of A is defined by

deg A = dimker A.

For instance, in the case of the matrix A in Example 27.5, we have rank A = 2
and deg A = 1.
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Theorem 27.7 For any linear map A on R™ we have rank A +deg A =n
Proof. Let ay,...,a; be the basis vectors of the subspace ker A, and let
Abq, ..., Ab,, be the basis vectors of the sub space im A. We show that vectors
al,...,ak,bl,...,bm

combined form a basis of the vector space R™. Indeed, on the one hand, they
are linearly independent, because the equality

aray + ...+ agag + B1by + ...+ Bbm =0
multiplied by A gives us
B1Aby + ...+ B Aby, =0

and this yields 81 = ... = (,, = 0. It follows that a1 = ... = a3 = 0.

On the other hand, they form a generating system: if x € R™ is taken
arbitrarily, then Ax € im A, and hence, it can be expressed in terms of the
vectors Abq,...,Ab,,

This means that  — (81b1 +. ..+ Bmbm) € ker A, so it is the linear combination
of the basis vectors ay,...,ax

x—(ﬁlbl—i—...—l—ﬂmbm):alal—i—...—i—akak.

Consequently, k +m = n. O

27.4 Multiplication of matrices

Suppose we are given two linear maps A : R — R™ and B : R™ — R* Then
we can consider the composition mapping B o A : R® — R* that we denote as
the product of the two maps:

BA=DBoA.

We can easily verify that BA : R® — R* is a linear map as well, therefore its
matrix in the standard basis is of the size £ x n. How can we compute this
matrix?

For a given index j consider the image of the vector Ae; with the map B
(i.e. the vector B(Ae;)). The i-th coordinate of this image vector is:

birar; + ...+ binam; ,

which is precisely the entry in the product matrix BA of the i-th row and the
j-th column. Conclusion: we carry out the multiplication of the matrices so
that we multiply all rows of B by the columns of A according to the above rule.
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ATTENTION! The order is important! The product BA does not coincide
with AB (except some special situations). It may happen that the other is not
even defined.

Example 27.8 In view of the rule above, verify the following multiplication
of matrices:

2 3 10 ‘i 7? 7% 14 -7
-10 21 0 3 o |=1]2 5 -1
11 -11 L1 0 1 -1 -1

so the product matrix is of size 3 x 3.

Regarding the multiplication of matrices as the composition of mappings,
we the following associative property:

C(BA) = (CB)A (27.2)

in all cases when the multiplication is well defined.

Example 27.9 Consider the matrix A defined with a parameter «

1 2 5
A= 2 -1 0
-3 1 «

and find its rank and degree of freedom. Using Gauss-Jordan-elimination we
conclude:

(1] 2 5| 2 5 1
2 -1 0[[-5] ~—10 2
-3 1 « 7T a+15|a+1
This tells us that 3 ifast-1
if a #£ —
M“A:{Q if o =—1
and making use of Theorem 27.7 we have

_J 0 ifa#-1
d%A{1 if o =—1.

Recitation and Exercises

1. Reading: Textbook-1, Sections 12.6, 12.7, 12.8 and 14.2

2. Homework: Textbook-1, Section 12, Exercises 3, 4, 5, 6, 7, 8, and Section
14, Exercises 1, 2 and 3.

3. Review: "Linear Algebra Exercises"
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Linear systems

28.1 Homogeneous systems

By a homogeneous system we mean the following system of linear equations:

aj1ry+...+ AinTy = 0

am1ix1+ ...+ amnrn = 0

where the coefficients a;; are given real numbers. Solve the system for the
unknowns x1,...,Zy.

If we compile the matrix A of coefficients and the vector x of unknowns this
way:
a1 ... Qip T1
A= T =
Gm1 -+ Qmn T,

then the homogeneous system can be rewritten in the form:
Az =0 (28.1)

whose solution set is exactly the subspace ker A. The vector z = 0 is always a
solution, if this is not the only one, we have infinitely many solutions.

Example 28.1 Find all solutions of the homogeneous system

T + 3.’£2 — 31’3 = 0
2I1 + Xro + 4563 =
Ty + 2w —x3 =

177
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Now the matrix A of coefficients is

1 3 -3
A=12 1 4
1 2 -1

and consider the system Az = 0. Use Gauss-Jordan-elimination:

1] 3 -3] 3 -3| 3
2 1 4|[-5] 10| -2

1 2 -1 -1 2 0

It shows that the columns of A are dependent. Denote the columns by a1, as, as,
then we get

a3 = 3a1 — 2as, thatis 3a; —2as —a3=0.
Therefore, 1 = 3, z9 = —2 and z3 = —1 are solutions. The whole solution set
is given by: megoldas pedig az
r=t-| =2 |, teR
-1
Clearly, in this situation we have

degA=1 and rankA=2.

28.2 Inhomogeneous systems

Consider the m x n matrix A, and let b € R™ be a nonzero vector. The system
Ax =10 (28.2)

is called an inhomogeneous system of linear equations.

Theorem 28.2 The system (28.2) has a solution if and only if b € im A, i.e.
the vecor b can be expressed as a linear combinations of the columns of A.

The solution is unique only if the columns of A are independent, i.e. its
degree of freedom is zero.

Proof. We only need to prove the unicity of solution. The proof is by
contradiction: if there were two solutions, z and y, then

Alx—y)=Ax—Ay=b-0=0,



28.2. INHOMOGENEOUS SYSTEMS 179

but this means that the columns of A are dependent. [J

Assume now that we know a particular solution Z of the inhomogeneous
system. Then all solutions can be given by using the solution set of the homo-
geneous system. This is formulated in the following theorem.

Theorem 28.3 Let T be a given solution to the inhomogeneous system. Then
all solutions can be given in the form

=2+ xg

where xq is a solution of the homogeneous system. Conversely, if xqy is any so-
lution of the homogeneous system, then T+ xq solves the inhomogeneous system.

Proof. Indeed, if = is any solution of the inhomogeneous system, then
consider the vector xyp = x — . This vector solves the homogeneous system,
because

Arg=Alx —2)=Az— Az =b—-b=0,

and we see that x = Z + x.

Conversely, take a solution zy of the homogeneous system arbitrarily, and
set x = T + x¢. Then

Az = A(Z +x9) = AT+ Axg=b+0=0,

that means x solves the inhomogeneous system. [J

Example 28.4 Find all solutions of the inhomogeneous system below:

T —x2+3x3+3x4 = 1
Ty — 20+ 23 —24 = 4
201+ 29 — 23+ 54 = 6.
Using the notations above, we have
1 -1 3 3 1
A= 1 =2 1 -1 and b= | 4
2 1 -1 5 6

The matrix A has 3 rows and 4 columns, therefore its degree of freedom is at
least 1, so the solution is certainly not going to be unique (if any). Gauss-
Jordan-elimination shows:

1] -1 3 3|1 -1 3 3|1 5 7|-2|2] 3
2

1 -2 1 —1|4|[-1] -2 —4]3 41 -3 2] -1

2 1 -1 5|6 3 =7 —1|4||-13| —-13| 13| 1] -1
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Consequently, the rank of A is 3, and its degree of freedom is 1. If we denote
the columns of A by ai,as,as,ay, then the above calculation tells us (look up
the last two columns) that

asg = 2a1 + 2a2 + a3 moreover b= 3a; —as —as.

This way we can give a solution to the inhomogeneous and homogeneous system
as well:

3 2
_ -1 2
=1 _ and 29 = 1
0 -1

According to our theorem above, the solution set of the inhomogeneous system
is given by:
[ 3 2
-1 2
~1 o1
0 -1

Example 28.5 For what values of the unknown parameters o and 8 does the
inhomogeneous system Ax = b have solutions?

1 -1 0 1
A= 2 1 3 and b= | 2
-1 1 « B

Perform the Gauss-Jordan-elimination:

1] -1 of1] -1 o 11 1
2 1 3 (3] 3 01 0
1 «

-1 ; 0 a|B+1|a|p+1
Then we conclude:
e there is exactly one solution if o # 0 and $ is any real number,
e there are infinitely many solutions if « =0 and 8 = —1,
e there is no solution if « = 0 and 8 # —1

The rank and degree of freedom of A depend on the parameters this way:

3 ifa#0

rankA—{ 2 ifa=0

and fo 4
0 ifaz#0
@gA{ 1 ifa=0.
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28.3 Inverse of a matrix

Let E denote the n xn matrix where all diagonal elements are 1, and all elements
outside the diagonal are 0. This matrix is called the n x n unit matriz. If we
regard F as linear transformation, it is the identity: for every vector x we have
Exr =x.

Definition 28.6 Consider an n x n square matrix A. We say that A is
invertible, if there exists an n x n square matrix A~" such that

A-A'=E.

The matrix A~ is called the inverse matriz of A.

Clearly, A~ is the inverse linear map, that is AA~'z = x for every = € R".
It is easy to see that we also have A~'A = E in this case, and (A71)~! = A.

The necessary and sufficient condition for the existence of the inverse is that
the map A is one-to-one. The next theorem is based on this observation.

Theorem 28.7 For an nxn matriz A the following statements are equivalent:

1. A is invertible.
2. The columns of A are independent.
3. ker A = {0}

4. im A =TR"

5. rankA=n

6. degA=0.

Instead of checking the equivalences pairwise (there are 15 of them!), it is
enough to prove the following array of implications:

1=2=2=3=4=5=6=1

They all come simply from the definition, and from Theorem 27.7.

ATTENTION! Please make sure you understand that the array of implica-
tions above really substitutes the pairwise equivalences. In mathematics this is
a commonly used (and quick) method for proving equivalences of several state-
ments.

In the case of invertible matrices the solution of a linear system can be given
explicitly.
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Theorem 28.8 Let A be an n X n invertible matriz. Then the inhomogeneous
system
Ar=b

has a unique solution for every b € R™, and the solution is given by

r=A"1b

It is worth mentioning though, that in most cases solving the system by
Gauss-Jordan-elimination is much faster than finding the inverse. Finding the
inverse is mainly advantageous when the system has to be solved multiple times
with different vectors b on the right-hand side.

28.4 Finding the inverse

Consider an n x n invertible matrix A. Finding the inverse basically means that
we are looking for an n x n matrix X so that AX = E. If the columns of this
unknown matrix X are denoted by z1,...,x,, then this process means solving
n copies of inhomogeneous systems of the form

A:Ek = €L

(k =1,...,n). This process is illustrated in the following example, where we
solve all copies simultaneously with Gauss-Jordan-elimination.
Example 28.9 Is the matrix A below invertible? If yes, find the inverse.
1 1 1
A=1]10 1 1
1 0 1

We solve the systems Ax = ey, Az = eg, Az = ez simultaneously:

1] 1 1|1 00 2 1] 10 0| of] 1 -1 0 -1 0
01 1[0 1 o0ft] 1] 0o1of 1|0 10f 1 0 -1
10 1{00 1|-1o0[-10 1|[1]/-1 1 1)-1 1 1
This shows us that
1 -1 0
A= 1 0 -1
-1 1 1

We can directly verify this result by carrying out the multiplication AA~! = E.
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Example 28.10 Let A and B are n x n invertible matrices. Regarding A and
B as mappings, it is obvious that the product AB is also invertible, since AB
is one-to-one as well.

How can we find the inverse matrix (AB)~!? We show that
(AB)"' =B71A,
Indeed, the matrix on the right-hand side is the inverse of the product AB, since
(ABYB™'A ™' = A(BB"YA ' = AFEA™ ' =E

in view of the associative rule (27.2).

Recitation and Exercises

1. Reading: Textbook-1, Sections 13.6, 13.7 and 14.3.

2. Homework: Textbook-1, Section 13.6, Exercises 2, 3, 4, 5, 6, 8, 10, 12,
Section 13.7, Exercises 2 and 4, Section 14.3, Exercises 1, 2, 3, 5 and 6.

3. Review: "Linear Algebra Exercises"
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Chapter 29

Eigenvalue, eigenvector

29.1 Eigenvalue, eigenvector

Definition 29.1 Consider a linear transformation A : R™ — R™ that is, an
n X n matrix. We say that a real number A is an eigenvalue of A if there exists
a vector v # 0 for which

Av = ).

In this case v is called an eigenvector of A associated with the eigenvalue .

Example 29.2 Consider the linear transformation A of the vector space R3
and the vector v, where

2 1 -1 2
A=1]0 1 1 and v=|1
2 0 -2 1
It is easy to verify that
Av =2

which means that A = 2 is an eigenvalue of A, and v is an associated eigenvector.
On the other hand, for the vector

we have

Au=0

185
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thus, A = 0 is an eigenvalue as well, and u is an associated eigenvector. Verify
that A = —1 is also an eigenvector of A and try to find an associated eigenvector!

ATTENTION! An eigenvector that belongs to (or associated with) a given
eigenvalue A is never unique. Just think of the fact that if v is an eigenvector
then so is any a # 0 scalar multiple. Indeed,

Alaw) = aAv = a - v = Aaw) .

Example 29.3 Examine the planar transformations in Example 27.2 and find
their eigenvalues.

1. If A is the a-multiple of all vectors, then « is the only eigenvalue of A,
and every nonzero vector of the plane is an eigenvector.

2. If A is the reflection with respect to the horizontal axis, then \; = 1 is an
eigenvalue, and e; is an associated eigenvector, further Ay = —1 is also an
eigenvalue, and e, is an associated eigenvector.

3. If A is the projection onto the 45° degree line, then the eigenvalues and
the corresponding eigenvectors are as follows:

A =1 and vlz[i} moreover Ao, =0 and ’U2:|:_i:|

4. If A is the rotation around the origin by the angle 0 < ¢ < 27 in positive
direction, then for ¢ = 0 we have X\ = 1, while for ¢ = 7 we have A = —1
and they are the only eigenvalues. In both cases all nonzero vectors of the
plane are eigenvectors.

For other angles the rotation A has no real eigenvalues.

29.2 Eigensubspace

Definition 29.4 Take a linear transformation A of the vector space R™ and
suppose the A is an eigenvalue of A. All vectors v with Av = Av form a subspace
the is called the eigensubspace of A associated with A. Notation:

Sa(A) ={veR": Av = v}
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Example 29.5 Consider the following matrix

1
A=1]1
0

SN O
N OO

Simple calculation shows that A = 2 is an eigenvalue of A and es, ez are eigen-
vectors (linearly independent).

More independent eigenvectors associated with A = 2 cannot be found, thus
dim SA (2) =2

and ep and ez form the basis of this eigensubspace.

29.3 Finding eigenvectors

In this section we an n X n matrix A and suppose that A\ is an eigenvalue.
Question: how can find all associated eigenvectors?

Let E denote the n x n identity matrix, and assume that v is an eigenvector
that belongs to A. Then
Av = v = AEwv

or by moving all terms to the left-hand side:
(A= XE)v =0

Consequently, v is a solution of a homogeneous system. This observation is
formulated in the next theorem.

Theorem 29.6 Let A be an n X n matriz, and X is an eigenvalue of A. Then
Sa(N) =ker (A — A\E)

that is the eigensubspace is given by all solutions of a homogeneous system.

The case A = 0 particularly interesting. In fact, if 0 is an eigenvalue, then
the homogeneous system Av = 0 possesses a nonzero solution, and hence the
rank of A cannot be n. We emphasize this fact in a separate theorem.

Theorem 29.7 A is invertible if and only if A =0 is not an eigenvalue.

In most cases it is a lot more difficult problem to find the eigenvalues of a
linear transformation A.
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29.4 Independent eigenvectors

Consider a linear transformation A on the vector space R", and suppose that
A1,..., A, are all different eigenvalues of A. Take the nonzero corresponding
eigenvectors vy, ..., v;. We show that these vectors are linearly independent.

Theorem 29.8 The eigenvectors that belong to different eigenvalues are lin-
early independent.

Proof. We prove by induction. The statement is trivial £ = 1. Let us
suppose that the statement is true up to £ — 1. Now we prove by contradiction:
assume that vq,..., v, are dependent. This means that the vectors have a linear
combination

avr + ...+ o, =0 (29.1)

where not all coefficients are zero, for simplicity, say «; # 0. Multiply both
sides by the matrix A, then we get
a1Avi + ...+ apAv, = oA v + .o apgAgv =0

If we subtract the Ag-multiple of equality (29.1) from this latter equality, then
the last term will be cancelled, and what remains is:

a1(A — Ag)vr + ...+ Oék—l(/\k—l — A)vp—1 = 0.

Since all eigenvalues are different, and «y # 0, we see that the coefficient of v
is not zero, which means the vectors vy,...,v,_1 are dependent. However, this
contradicts to the assumption in the induction. O

Example 29.9 Consider again the matrix A examined in Example 29.2.
Simple calculation shows that A\; = 2, Ay = 0 and A3 = —1 are all eigenvalues
of A and the associated eigenvectors are

2 1 1
vp=|11|, wvge=| —1 and wv3=| —1
1 1 2

respectively. Using Gauss-Jordan-elimination, verify that vectors vy, vy, vs are
really linearly independent.

29.5 Diagonal form of transformations

A matrix is called diagonal if all entries outside the diagonal are zero (for ex-
ample like in the identity matrix). Diagonal matrices are easy to work with
(multiplication, power, etc.) that is why they are useful in linear algebra and



29.5. DIAGONAL FORM OF TRANSFORMATIONS 189

its applications. This justifies the important question: if a transformation is
given, does there exist a basis in which its matrix becomes diagonal? As we will
see in this section, such a basis consists of eigenvectors (if it exists).

Let us suppose that the eigenvalues of an n X n matrix A are Ai,..., A\,
(not necessarily all different), and the corresponding eigenvectors are vy, . .., vy,
respectively. Assume that the eigenvectors are independent. Since their number
is n, they form a basis of the space R".

Find the matrix of the transformation A in the basis of the eigenvectors! Let
A denote the matrix in this new basis. Since for all eigenvectors we have

Avp =X, k=1,...,n

this shows that A will look like:

Aro... 0
A= _
0 ... A\
Let us examine the relationship between the matrices of the transformation A
with respect to the bases e,...,e, resp. v1,...,v,. Denote by S the n x n
matrix, whose columns are the the eigenvectors vy,...,v,, i.e.
Sek = Vi

Clearly, S invertible because its columns are linearly independent. Moreover
A’Uk = SA@]C

for every index k = 1,...,n. Multiply both sides by the matrix S~!, then we
get .
S’IASek == Aek

for every index k, therefore .
A=5"1AS
We summarize these results in the following theorem.
Theorem 29.10 Suppose that A is an n X n matriz whose eigenvalues are
Al, ..., An, and the corresponding eigenvectors vi,...,v, form a basis of the

space. Then the matriz of A with respect to the basis of the eigenvectors is a
diagonal matriz A with the eigenvalues in the diagonal. More specifically:

A=85"1AS8

where the columns of S are the eigenvectors vy, ..., vy,.

Példa 29.11 Consider again the linear transformation A in Example 29.2.
For the eigenvalues A\ = 2, Ao = 0 and A3 = —1 the corresponding eigenvectors
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2 1 1
v = 1 s Vg = -1 and V3 = -1
1 1 2

These vectors are independent, therefore they form a basis of the space R3.
With respect to this basis the matrix of A will be diagonal. More specifically:

2 1 1 . 2 0 0
S=|1 -1 1 and A=1|0 0 0
1 -1 2 0 0 -1

and with these notations R
A=571t48

Please verify this identity directly by determining the inverse matrix S~! and
by carrying out the indicated multiplications!

Example 29.12 Unfortunatly, not every transformation has a diagonal form.
The reason is that the eigenvectors may not form the basis of the space. For
instance, in the two dimensional situation, the matrix

[2 ]

has one eigenvalue: A\ = 1, and there is only one independent eigenvector (for
instance e;). VERIFY!

Recitation and Exercises

1. Reading: Textbook-1, Sections 14.4 and 14.5.

2. Homework: Textbook-1, Section 14.4, Exercises 1, 2, 3, 4, 5, 6, 7, and
Section 14.5, Exercises 1, 2 and 3.

3. Review: "Linear Algebra Exercises"



Chapter 30

Determinant

30.1 Permutations
Consider the set H = {1,...,n} of the first n integers.

Definition 30.1 A one-to-one map p : H — H is called a permutation of the
set H.

Intuitively, a permutation is an arrangement of the elements in H. The
number of all permutations of H is n! (n factorial).

Definition 30.2 Consider a permuatation p of the set H, for which
p(1) =41, ... pn)=i,

that is the arrangement {i1,...,i,}. We say that the elements ¢; and i, form
an inversion if j < k and ¢; > iy.

Example 30.3 For instance, in case of n = 5 the permutation
{1,3,2,4,5}

contains a single inversion, while in the permutation
{2,3,1,5,4}

we find three inversions.

Definition 30.4 A permutation p of the set H halmaz p is called odd if the
number of inversions is odd, otherwise we say that the permutation is even.

191
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30.2 The determinant

Consider the following n x n matrix A

a1 ai12 . A1n

a1 a9292 . agn
A =

Gp1  An2 Ann

Defintion 30.5 By the determinant of the matrix A we mean the following
expression:

det A = Z(—l)P(Im a2i, " Qni,,

where the summation is carried out for all permutations {i1,...,%,} of the set
H ={1,...,n} thus, the sum contains n! terms. The exponent of (—1) is odd
or even, if the permutation {iy,...,i,} is odd or even, respectively.

Some other usual widely used notations (each one is used throughout this
book):

aiq ai12 N A1n

a1 az2 ... agn
det A= |A| =

anp1  Aap2 cee Qpp

As we can see from the definition, the products behind the sum sign are compiled
so that they contain precisely one factor from each row and from each column
of the matrix.

Example 30.6 Verify directly by the definition that for the matrices

2 1 -1
A{g _i] and B=|0 1 3
1 0 -2

we have det A = 11 and det B = 0.

30.3 Properties of the determinant

Theorem 30.7 det A = det AT



30.3. PROPERTIES OF THE DETERMINANT 193

Indeed, if the rows and the columns of the matrix are interchanged, then the
parity of the inversions will not change.

Theorem 30.8 If all elements of one row of the matriz are zero, then the
determinant of the matriz is zero

Indeed, in this case all terms behind the sum sign contain a zero factor.

Theorem 30.9 If we interchange two rows of the matriz, then the determinant
of the matriz changes the sign.

Indeed, in this case the parity of inversions in every term will change.

Theorem 30.10 If two rows in the matriz are identical, then the determinant
of the matrix is zero.

Indeed, if we interchange the two identical rows, then on the one hand the

determinant changes the sign, on the other hand it remains unchanged, thus
det A = —det A. Hence, det A = 0.

Theorem 30.11 If a row of a matriz is multiplied by X\, then its determinant
is multiplied by \ as well.

Indeed, in this case every term behind the sum sign is multiplied by A, since
every term contains precisely one factor from each row.

Theorem 30.12 If in a matriz one row is a A\-multiple of another row, then
the determinant of the matriz is zero.

Indeed, if A is factored out from the matrix, then we obtain a matrix with
two identical rows.

Theorem 30.13 If in a matriz the i-th row is given in the form of a sum like
aijzbij—i-cij j=1...,n

then its determinant is the sum of the two determinants with i-th rows of ele-
ments b;; and c;; respectively.

Indeed, behind the sum sign every product is the sum of such terms.

Theorem 30.14 If in a matriz one row is the linear combination of the other
rows, then its determinant is zero.
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Indeed, divide the determinant into a sum as in the preceding theorem. If
we now factor out the scalar coefficients from each term, we obtain two identical
rows in each determinant. Therefore, each of them is zero.

Theorem 30.15 If in a matriz we add a A scalar multiple of a row to another
row, then the determinant remains unchanged.

Indeed, in this case the determinant can be divided into a sum of two deter-
minants, where the second term is zero.

Theorem 30.16 If A and B are n x n matrices, then det (AB) = det A-det B.

This statement can be verified by carrying out the matrix multiplication
step-by-step, and by exploiting our previous theorems.

Finally, as a consequence, we can formulate the following fundamental prop-
erty.

Theorem 30.17 The columns of a square matriz A are linearly dependent if
and only if det A = 0.

The necessity is an immediate corollary of Theorem 30.14. The sufficiency
comes from the fact that if the columns of A are linearly independent, then A
invertible, and hence AA~! = E. Thus,

det (AA™Y) =det A -det A™' =det E =1
and consequently, det A # 0.

30.4 Evaluating the determinant

We conclude directly from the definition that the determinant of a 2 x 2 matrix
is given by
det A = a11a22 — ar2a21

Completely analogously, the determinant of a 3 x 3 matrix can be evaluated like

a1  a22
agzyp as2

a21 a23
as1 ass

a a9s
det A = ail 22 B ai12 + a3
az2 ass

If we apply this observation iductively, we come to the following result.

Theorem 30.18 Consider the n x n matriz A, and denote by Ai; the (n —
1) x (n—1) matriz that we obtain by discarding the first row and the j-th column
of A. Then

det A =" (=1)""ay;det Ay;
j=1
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This procedure is called the division into subdeterminants.

Example 30.19 Apply the division into subdeterminants procedure for the
matrix

3 6 0 2
01 2 4
A74835
12 00

Step-by-step, first taking the 3 x 3 subdeterminants, then the 2 x 2 subdeter-
minants, verify that we finally get det A = —6.

30.5 Finding the eigenvalues

Consider an n x n matrix A, and suppose that \ is an eigenvalue with a corre-
sponding eigenvector v # 0, i.e. Av = Av. This can be rewritten like

Av—dv=(A—-AE)v=0.

This equality means that the columns of the matrix A — AE are linearly depen-
dent, since the homogeneous system possesses a nonzero solution. Making use
of Theorem 30.17 we come to the following conclusion.

Theorem 30.20 The scalar A is an eigenvalue of the matriz A if and only if
det (A — AF) =0.

This necessary and sufficient condition ultimately means finding the roots
of the n-th degree polynomial det (A — AFE). This polynomial is called the
characteristic polynomial of the matrix A.

Example 30.21 Consider the matrix
0 1 1
A=11 0 1
1 1 0
and find the eigenvalues. Expand the determinant of the matrix A — AE

det (A —AE) = (A +1)*(A—2)

The roots of this cubic polynomial are A\; = —1 (with multiplicity 2), and
A2 = 2, and they are the eigenvalues of A. As a routine calculation, find the
correponding eigenvectors as well. The linearly independent solutions of the
homogeneous system

(A= AE)v=0
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are as follows. For A = —1 we have
-1 -1
v = 1 and vy = 0
0 1
as well as for A = 2 we get
1
V3 = 1
1

The vectors vy, v2,v3 form a basis of R3, and the matrix A admits the diagonal
form

A:

o o
\
o~ o
N oo

in this basis.

Recitation and Exercises
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3. Review: "Linear Algebra Exercises"
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Scalar product

31.1 Scalar product

Definition 31.1 The scalar product of the vectors z and y in the vector space
R™ is defined by

(z,y) = 2151+ - + Tnyn
where on the right-hand side we have the coordinates of the vectors.

Please observe that in the case of n = 2 this concept coincides with the one
studied in highschool.

Definition 31.2 The norm or absolute value of a vector € R™ is defined by

2l = (2, 2))"% = /a3 + ... +a2

that we also call the length of the vector.

Clearly, in view of the Pythagorean theorem, this concept complies with our
geometric intuition. It is also easy to see that ||z|| = 0 if and only if z = 0.

Definition 31.3 The distance of the vectors z and y is defined by ||z — y||.

Example 31.4 For instance, if we consider the vectors

2 4
r=| -2 | andy=1| -3
1 0
then their scalar product is (z,y) = 14, and their norms are ||z| = 3 and

llyl| = 5. The distance of the two vectors is ||z — y|| = v/6. VERIFY!

197
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31.2 Angle of vectors, perpendicularity

Theorem 31.5 Cauchy-Schwarz-inequality For all vectors x,y € R"™ we
have

[z, o) < ll=ll - Nyl

Proof. Let ¢t be an arbitrarily chosen real number, and consider the following
quadratic polynomial:
g(t) = (z +ty, x + ty)
On the one hand, by the definition of the scalar product we get:
g(t) = ||| + 2t{z, y) + £*||y||?

on the other hand this is the square of the norm of the vector x + ty, therefore
it is nonnegative, i.e.
g(t) >0 for every t.

If a quadratic polynomial is nonnegative, then its discriminant is nonpositive
that is:
2
4((z,y)” < 4|z - lyll?

Dividing by 4, and taking the square root of both sides we have
[z, )l < [l - llyll
and this is exactly that we had to prove. [J

Theorem 31.6 (Triangle-inequality) |z + y| < ||z| + [|y]|.

Proof. Indeed, in view of the Cauchy-Schwartz-inequality we get

lz+yl? = (e+ya+y) =lz)*+2y) + |yl
< 2l +2ll2ll -yl + yll* = (il + llyl)?*

and by taking the square root of both sides, the statement ensues. O

Definition 31.7 The angle of the nonzero vectors x and y is defined as the
angle 0 < ¢ < 7 for which

(z,y)
]| - llyll
Moreover, we say that the vectors x and y are orthogonal (or perpendicular),
notation: x Ly, if

cosp =

(x,y) =0
Obviously, in this case cosp = 0, i.e. ¢ = 7/2. The vector 0 is orthogonal to
any other vector.

ATTENTION! Please observe that the angle of vectors is well defined. In-
deed, in view of the Cauchy-Schwartz-inequality we see that —1 < cosp < 1.
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31.3 Orthogonal systems

Definition 31.8 We say that the vectors aq, ..., ax form an orthogonal system
in the vector space R"™, if none of them is the zero vector and they are pairwise
orthogonal, i.e.

(ai, aj> =0

for all indices ¢ # j.

Theorem 31.9 FEwvery orthogonal system is linearly independent.

Proof. Consider the orthogonal system aq,...,ax, and suppose that
ara; + ... +agap =0.

Take scalar product of both sides by the vector a; vektorral. By the pairwise
orthogonality each product is zero except the i-th term, we get

aillag]|* =0

Since a; # 0, we conclude that «; = 0. This argument can be applied for all
indices 7 = 1,...,k therefore, we have that a; = ... = a; = 0. This exactly
means that the vectors ai,...,ax are linearly independent. O

The above result tells us that in the space R™ the maximum number of
elements of an orthogonal system is n. At the same time, an orthogal system
with n elements forms the basis of the whole space.

Definition 31.10 By an orthogonal basis of the space R™ we mean an or-
thogonal system ayq,...,a,. We say that this basis is orthonormal, if all basis
vectors have unit length, i.e. ||a;|| =1 for every indexi=1,...,n.

The orthogonal or orthonormal basis of a subspace M is defined completely
analogously.

Example 31.11 For instance, it is easy to check that the vectors

5 ] :
a1 = 0 , Q2 = 0 , a3z = -1
_1 V3 0

2 2

form an orthonormal basis of the space R3.
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31.4 Gram-Schmidt-procedure

Vectors given in an orthonormal basis are easy to work with (think of scalar
products!), so it is a natural question to ask if there exists an orthonormal
basis in any subspace. An affirmative answer is given by the Gram-Schmidt-
procedure, which even provides an algorithm showing how to create this basis.

Consider a subspace M in the vector space R™ and suppose that the vectors
ai,...,a form a basis of M. Starting with this basis, we show how we can
construct an orthonormal basis of M.

Put b; = ay. Then set by = as + a1b;, where the unspecified scalar «; is
chosen so that by becomes orthogonal to the vector b;. This means

(b2, b1) = (az,b1) + a1(by,b1) =0

From this equality we get
o <b17 (12>

0 = —
' 162112

and therefore
. (b1, a2) .
[ba]

Very similarly, we look for the vector b3 in the form

b2:a2

b3 = az + [1b1 + B2b2

where the unspecified scalars should be chosen so that b3 becomes orthogonal to
both vectors b; and bs. Finding the scalars from the two conditions, we obtain
Ekkor a két feltételbdl az egyiitthatokat meghatarozva

(b1, a3) (b2, as)
[[ba]? [1b2]|

By continuing this process, finally we come to an orthogonal basis of the sub-
space M. We formulate this result in the theorem below.

b — ba .

b3:a3

Theorem 31.12 (Gram-Schmidt) In every subspace of R™ there exists an
orthonormal basis.

Proof. In the construction above divide each vector b; by the positive scalar
||b;]|, then we obtain an orthonormal basis. O
31.5 Orthogonal complement
Consider a subspace M in the vector space R™.

Definition 31.13 The set of all vectors that are orthogonal to every vector
of M is denoted by

M+ ={y e R": (y,z) = 0 for every z € M}
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and is called the orthogonal complement of M.
We can easily check that M~ is a subspace in R™.

Példa 31.14 In the three dimensional space the orthogonal complement of a
straight line that passes through the origin is the perpendicular plane passing
through the origin. Conversely, the orthogonal complement of a plane is the
perpendicular line cutting the plane in the origin.

For instance, if M is a subspace spanned by two vectors:

-1 1
M =lin 01, 2
1 1

then the orthogonal complement is the subspace spanned by a single vector:

1
Mt =1lin -1
1

The converse statement is also true, this is claimed in the following theorem.

Theorem 31.15 For any subspace M we have (M*)+ = M.
The statement follows easily from the definition.

Theorem 31.16  Pick a vector a € R™ and consider a subspace M. Then
there exists exactly one vector w € M for which

a—u€e M-

Proof. Take an orthonormal basis by, ..., by in the subspace M. We try to
find the vector u of the subspace M in the form:

u=aoa1by + ...+ apbyg

The unspecified scalar coefficients have to be chosen so that a —u is orthogonal
to each basis vector. This means the following equalities:

(biya —u) = (bi,a) —; =0

for all indices 4 = 1,...,k. The unknown scalars are uniquely determined by
these equalities. O



202 CHAPTER 31. SCALAR PRODUCT

This vector u is called the orthogonal projection of a onto the subspace M.

Theorem 31.17 Let M be a subspace in R™. Then every vector a € R™ can
uniquely be given in the form
a=u+v

where w € M and v e M*.

Bizonyitas. Let u € M denote the orthogonal projection of a onto the
subspace M. Then the vector v = a — u is orthogonal to M (verify!), and
consequently v € M.

The unicity comes from the fact that if we have
a=u +v

for another two vectors, then by subtracting the second equality from the first,
we get © —u’ = v —v’. This implies u — v € M and u — v’ € M~+. Thus, u — v’
is orthogonal to itself, which means

0=(u—uv,u—u)=|u—|?

This is only possible if © — v’ = 0 and similarly v — v’ = 0. O

Theorem 31.18 Let M be any subspace in R™. Then
dim M + dim M+ =n.

Proof. Take an orthonormal basis uq,...,u, in the subspace M, and take
an orthonormal basis vy, ...,v,, in the subspace ML. Then, in view of our
previous theorem, the collection of vectors

ULy ooy Uky Vlye e ey U

spans the whole vector space, i.e. it is a generating system, and hence, k+m > n.
On the other hand the vectors of this collection are pairwise orthogonal, so they
are linearly independent (see Theorem 31.9), therefore k +m < n. We conclude
that k +m = n. O

Recitation and Exercises
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12.5, Exercises 2, 3 and 4.

3. Review: "Linear Algebra Exercises"



Chapter 32

The spectral theorem

32.1 Transpose of a matrix
Consider a linear transformation A of the space R", i.e. an n X n matrix.

Definition 32.1 The transpose of A is the linear tranformation AT for which
(ATy,z) = (y, Az)

for ecery z,y € R™.

What does the matrix A7 look like? Apply the definition specifically on the
basis vectors, then
<AT€i, €j> = <€i,A€j>
for all indices ¢ and j. On the righ-hand side of the equality we have a;;, which
is the element in the i-th row and j-th column of A, while on the left-hand side
we get the element in the j-th row and i-th column of A”. Therefore the matrix
AT is obtained by interchanging the rows and the columns of A.

In other words, we may also say that the matrix AT is created by reflecting
the elements of A with respect to the diagonal. Clearly, (AT)T = A.

Theorem 32.2 For any square matric A we have

ker A = (im AT)l

Proof. On the one hand, if a vector z is orthogonal to the subspace im AT,
then
0= (ATy, ) = (y, Az)

for every vector y. This is only possible if Az = 0, and it means x € ker A.

203
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Conversely, in view of the above equality, every vector in ker A is orthogonal
to the subspace im AT O

This observation leads us to the Rank Theorem of matrices.

Theorem 32.3 (Rank theorem of matrices) For any n X n matriz A we
have
rank A = rank AT

Proof. Indeed, the previous theorem and Theorem 31.18 impy that
dimker A + dimim AT =n

and in view of Theorem 27.7 Tétel we get dimim A = dimim AT, that proves
our statement. O

This last theorem can also be reformulated like: in any square matrix the
number of linearly independent columns is equal to the number of independent
TOWS.

32.2 Orthogonal matrices

Definition 32.4 A linear transformation S of the space R™ is called orthogonal,
if it is invertible and S~! = S7.

What does the matrix S look like? The equality S”S = E means that the
scalar product of the i-th column of S by itself is 1, moreover, in case of i # j
the scalar product of the i-th and the j-th columns is zero. That tells us that
each column has a unit norm, and the different columns are pairwise orthogonal.
This is where the name comes from.

Example 32.5 Let S stand for the rotation of the vectors of the plane around
the origin by the angle ¢ in positive direction. As we have seen, the matrix of
this transformation is given by

cosyp —sinep
sin ¢ cos ¢

This matrix is easily seen to orthogonal, since both columns are of unit norm,
and the scalar product of the two columns is zero. Therefore,

g1 — cosp sing
" | —sing cosy
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which is precisely the matrix of the rotation by the angle —¢. Verify this directly
by evaluating the product ST'S.

Theorem 32.6 An orthogonal transformation keeps the length of the vectors.

Proof. Indeed, if S is an orthogonal transformation, then
|Sz|* = (Sz, Sz) = (ST Sz, ) = (x,2) = ||

for every vector x. O

Theorem 32.7 The absolute value of any eigenvalue of an orthogonal matriz
15 1.

Proof. If ) is an eigenvalue of the orthogonal transformation S, and v # 0
is an associated eigenvector, then

AP - Jlvll* = (A, M) = (Sv, Sv) = (ST Sv,v) = ||v]]?

that implies [A\|? = 1. O
32.3 Symmetric matrices

Definition 32.8 A linear transformation A of the space R is called symmetric
if A=AT.

Obviously, in this case the matrix A is symmetric with respect to the diagonal
(that explains the name), i.e. a;; = a;; for all indices ¢ and j. As a special case
of Theorem 32.2 we have the following statement.

Theorem 32.9 If A is symmetric, then

ker A = (im A)*

What can we say about the eigenvalues and eigenvectors of an n x n sym-
metric transformation A? Set

P()\) = det (A — AE)

which is the characteristic polynomial of A (of degree n).
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Theorem 32.10 The polynomial P has a real root. Consequently, the sym-
metric transformation A has a real eigenvalue and an associated eigenvector.

The proof of this theorem is fairly complicated (technically goes far beyond
this course), so we skip it. It can also be proven that (with multiplicity) P has
exactly n real roots.

Theorem 32.11 If A is a symmetric transformation, then the space R™
possesses an orthonormal basis that consists of eigenvectors of A.

Proof. The proof is carried out by induction on the indices 1 < k < n. Our
preceding theorem claims that if & = 1, then the transformation A has a real
eigenvalue A; and an associated eigenvector vy with |lvy]] = 1.

Let us assume that we have found k—1 orthonormal eigenvectors vy, ..., vk_1
and let M denote their spanned subspace. Then A maps the subspace M= into
itself (invariant), because if z € M+ is any given vector, then

(vi, Az) = (Av;, z) = (M, z) =0

forevery i =1,...,k—1, and hence Az € M. If we now consider the symmetric
transformation A restricted onto the subspace M=, then (in view of the previous
theorem) we can again find a real eigenvalue A, and an associated eigenvector
Vk with ||vk|| =1.

As a result of our construction, this vy is orthogonal to the eigenvectors
v1,...,Ug_1, therefore the vectors vy,..., v form an orthonormal system. [J

32.4 Spectral theorem of symmetric matrices

Now we exhibit how we can find the diagonal form of a symmetric matrix.

Take an n x n symmetric matrix A. Theorem 32.11 claims that we can find
an orthonormal basis of the space R™ that consists of eigenvectors of A. Let S
denote the matrix whose columns are these eigenvectors.

Then obviously, S is an orthogonal matrix, which means S~ = S7. Sum-
ming up, we can reformulate Theorem 29.10 specifically for symmetric matrices
in the following way.

Theorem 32.12 (Spectral theorem for symmetric matrices) Let A be
an n X n symmetric matriz, and consider an orthonormal basis of the space that
consists of eigenvectors of A. Let S denote the matriz of the eigenvectors. Then
S is orthogonal, and the matriz of A in the basis of the eigenvectors is

A=STAS
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where A is the following diagonal matriz:

M ... O
A = -
0 ... X\
where the diagonal elements are the corresponding eigenvectors, respectively.

Take a look at how we can construct S for a given symmetric matrix A.

The simple situation is when the matrix A admits n different eigenvalues.
Then the corresponding eigenvectors are automatically orthogonal. In this case
we construct the matrix S by simply inserting the eigenvectors with unit norm
into the columns of S.

Example 32.13 Consider the following symmetric matrix A:

Find the eigenvalues first! The characteristic polynomial of A is given by:
PA) = (A —=TA+6)(—2—))

whose roots are Ay = 1, A2 = —2 and A3 = 6. The corresponding eigenvectors
for different eigenvalues A can be obtained by finding nonzero solutions of the
homogeneous system (A — AE)x = 0. These solutions are, for instance

2 0 1
v = 0 Vg = 1 V3 = 0
—1 0 2

These eigenvectors are automatically orthogonal, and they should be converted
into unit norm. Finally, the orthogonal matrix S and the diagonal matrix A
will look like:

2 1

i 0 I
S = 0 1 0 and A=|0 -2 0

1 2

R 006

Then we have

A=STAS

and also verify this identity by performing the indicated multiplications.

The situation is slightly more complicated, when we have more than one
linearly independent eigenvector associated with an eigenvalue. Since they are
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not necessarily orthogonal, we want to use the Gram-Schmidt-procedure to make
them orthogonal. This situation is illustrated in the following example.

Example 32.14 Modify the previous example this way:

2 0 2
A=1[10 6 0

2 0 5
then the characteristic polynomial is

P(X) = (6 — A\)(A2 — TA +6)

whose roots are Ay = 1 and Ao = 6, and the latter with multiplicity 2. For
the eigenvalue \; it is convenient to choose the eigenvector vy in the preceding
example. For the eigenvalue Ay = 6 the degree of freedom of the homogeneous
system (A — 6F)x = 0 is 2, thus, we have 2 linearly independent solutions, for
instance

1 1
Vo = 0 and V3 = 1
2 2

However, these two vectors are not orthogonal, so we apply the Gram-Schmidt-
procedure. As a result, instead of v3 we obtain the following eigenvector us:

0
_ (v, v2)
us V3 — 5 U2 1
fea] .
Ultimately, we come to the matrices
2 1
VAR 0 . 1 00
S = 0 0 1 and A=|0 6 0
1 2
7z 0 0 0 6
so that R
A=S8T4AS

that we should verify again directly by performing the indicated multiplications.

Recitation and Exercises

1. Reading: Textbook-1, Sections 14.5 and 14.6.

2. Homework: Textbook-1, Section 14.5, Exercises 1, 2, 3, Section 14.6, Ex-
ercises 1, 2 and 3.

3. Review: "Linear Algebra Exercises"



Chapter 33

Quadratic forms

33.1 Quadratic forms

A purely quadratic function defined on the space R™ (i.e. no linear or constant
terms) is introduced the following way.

Definicié 33.1 A function @ : R™ — R is called a quadratic form if it is given
by

Q(z) = Q(z1,...,xn) = an 23 + a19T1 20 + A22x3 + A13T123 + . .. + Appa>
that is a power function where all terms are purely quadratic.

For any quadratic form Q we can alway find an n x n matrix A so that for
every

Q(z) = (x, Ax) (33.1)
thus, @ is given in terms of a scalar product. This is illustrated in the example
below.

Example 33.2 On the space R3 consider the quadratic form
Q(z) = Q(x1, w0, 23) = 3% — day w9 + 2103 + 25 + 6xo23 — 5T2

Collect the coefficients in matrix A the following way:

3 -4 2
A=10 1 6
0 0 -5

Verify that for this matrix A we really have Q(x) = (x, Az) for every x. However,
this is not the only matrix with this property. If we introduce

3 =2 1
B=| -2 1 3
1 3 =5

209
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then we again have Q(z) = (x, Bx) for every z € R?.

We can observe that there are infinitely many matrices A with the equality
(33.1), but there exists only one symmetric matrix B that satisfies this property.
If any quadratic form Q(z) = (x, Az) is given, this symmetric matrix B is
determined by the equality

B=-(A+4")

DN | =

and then we have
Q(r) = (z, Az) = (z, Br)

for every z € R™.

33.2 Symmetric matrix of a quadratic form

We can formulate the last observation of the previous section for symmetric
matrices.

Theorem 33.3 Consider a quadratic form @Q : R — R. Then there ezists
ezactly one n X n symmetric matriz B for which

Q(z) = (x, Bx)

for every x € R™. Conversely, for every symmetric matriz B the above scalar
product defines a quadratic form.

This theorem basically tells us that there is a one-to-one correspondence
between quadratic forms and symmetric matrices.

Example 33.4 Consider the quadratic form
Q(x1,x0,23) = Qx% — 2x120 + 4x123 — xg + 8woxs + Smg

and find the corresponding symmetric matrix B.

Absolutely analogously to the preceding example, we bisect the coeffients of
the mixed products, and then we come to the following symmetric matrix:

2 -1 2
B=| -1 -1 4
2 4 3

Check that we really have Q(z) = (x, Bx) for every z € R3.
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33.3 Definite quadratic forms

For finding minimum and maximum values of multivariate functions we will
need to examine the sign of quadratic forms. For this purpose we introduce the
following definition.

Definition 33.5 We say that a quadratic form @ is

e positive definite, if Q(z) > 0 for every z € R and = # 0,

e positive semidefinite, if Q(x) > 0 for every x € R™ and there exists an
To # 07 with Q(ZO) = Oa

e negative definite, if Q(x) < 0 for every z € R and x # 0.

e negative semidefinite, if Q(z) < 0 for every € R™ and there exists an
To 7& 07 with Q((E()) = 07

e indefinite, if none of the above.

Example 33.6 For instance, the quadratic form with three varaibles
Q(z1, T2, x3) = 227 — 2x120 + 22 + 3x§

is positive definite, because it can be transformed into a sum of squares:
Q(z1, 72, 73) = 23 + (x1 — 22)* + 323,

and this is positive for every vector x # 0.

Similarly, the quadratic form
Q(z1, w0, x3) = 22 — 22129 + 25 + 33:% = (21 —z2)* + 3x§

is positive semidefinite, since on the one hand Q(x) > 0 for every vector x, on
the other hand Q(1,1,0) = 0, that is we can find a nonzero vector where @Q take
the value zero.

Further, we can see that the quadratic form
Q(x1,x2,x3) = Qx% —2x170 + x% — 3x§

is indefinite, since it takes both positive and negative values. In particular,
direct substitution shows that Q(1,1,0) =1 > 0, and Q(0,0,1) = -3 < 0.

Throughout the rest of the book we will use these concepts completely anal-
ogously for symmetric matrices associated with quadratic forms.
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33.4 Completing the square

The definite property of a quadratic form is very easy to decide if it consists
purely of square terms (there are no mixed products).
Example 33.7 Consider the following quadratic form on the space R*:

Q(z) = 527 + 322 + 922 + 222

This is clearly positive definite, since the sum of the squares is positive if x # 0.
On the other hand, the quadratic form

R(z) = 323 + 5a3 — 2275

is indefinite, because its value on the vector

=1 a29=1 23=0 x24=0
is positive, while the value of R on the vectos

1 =0 29=0 23=0 x4=1
is negative.

Very similarly, we can check that the quadratic form
P(x) = 323 + x5 + 25

(ATTENTION, z; is missing!) positive semidefinite. Indeed, on the one hand
the sum of squares is nonnegative, on the other hand there exists a vector x # 0,
namely

r1=1 and zo=a23=24=0

wher P takes the value zero. Thus, P cannot be positive definite.
We summarize the observations of this example in the following theorem.

Theorem 33.8 Suppose that the quadratic form Q contains only purely square
terms:
Q(z) = b1a? + boaZ + ... + b2

Based on the signs of the coefficients, we can distinguish the following cases.
o If for every index k we have by, > 0, then @ is positive definite.

o If every by, > 0, and there exists an idex j with b; = 0, then Q s positive
semidefinite.

e If we have both positive and negative coefficients, then Q) is indefinite.

We can formulate analogous statements for negative, resp. nonpositive coeffi-
cients. These observations lead us to examine how we can transform a quadratic
form so that it contains purely square terms (completing the square in n dimen-
sion).
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33.5 Definite property based on eigenvalues

Consider a quadratic form @ : R — R and let B denote the corresponding
n X n symmetric matrix.

By the spectral theorem of symmetric matrices (previous chapter) the space
R™ has an orthonormal basis
Viy.--,Un

that consists of eigenvectors of B that is
B’Ul = )\1’01 N Bl}n = /\nvn .

In this basis the matrix B takes the following diagonal form:

AMo... 0
B frg -,
0 ... M\
where A1, ..., \, are the corresponding eigenvalues of B (not necessarily differ-

ent). Using this diagonal matrix the quadratic form will contain purely square
terms. Indeed, for any vector y = y1v1 + ... + ynv, in the space

(y, By) = \iyi + ...+ A\y2

This leads us to the following theorem.

Theorem 33.9 Consider the quadratic form Q, and let B denote the corre-
sponding symmetric matriz, i.e.
Q(z) = (z, Bx)
for every x € R™. Examine the eigenvalues of B.
o If all eigenvalues are positive, then Q is positive definite.

e If all eigenvalues are nonnegative and at least one of them is zero, then Q)
is positive semidefinite.

o If all eigenvalues are negative, then Q is negative definite.

e If all eigenvalues are nonpositive and at least one of them is zero, then @)
is negative semidefinite.

o If there are both positive and negative eigenvalues, then Q is indefinite.

Proof. We only have to prove that B and B have the same definite property.
By keeping the usual notations, if S denotes the matrix of the eigenvectors of
B, then we have

(y, By) = (y, ST BSy) = (Sy, BSy) = (x, Bx)
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for every vector y in the space. Since S is invertible, the set of vectors z = Sy
is the whole space (i.e. the range of S is the whole space). O

Example 33.10
Specify the definite property of the quadratic form
Q(z) = 207 + 5103 + 523 — 137, — T3 .
The corresponding symmetric matrix B is given by:
2 0 2
B=|10 5 0
2 0 -1
whose characteristic polynomial is
det (B=AE)=(5-XNAN=3)(A+2).
The roots (that is the eigenvalues of B) are
)\1:5 /\2:3 and )\3:—2

We have both positive and negative eigenvalues, therefore @) is indefinite.

Recitation and Exercises

1. Reading: Textbook-1, Sections 15.8 and 15.9.

2. Homework: Textbook-1, Section 15.8, Exercises 1, 2, 3, Section 15.9, Ex-
ercises 1, 2, 3 and 4.

3. Review: "Linear Algebra Exercises"



Chapter 34

Functions with several
variables

34.1 Partial derivatives

Consider a function f : R™ — R. We can view it as f(z) = f(z1,...,2,), that
is the function of the n coordinates of the vector z € R".

Definition 34.1 We say that f is partially differentiable with respect to the
k-th variable at the point x, if the function

F(t) = f(z +tex)

is differentiable with respect to ¢t at ¢ = 0, where e is the k-th standard basis
vector. Notation:
_ of

F/(0) = fila) = 5 (a)

is the partial derivative of f with respect to the k-th variable at the point z.

In other words, to determine the partial derivative with respect to the vari-
able k, we regard all other variables constant and differentiate with respect to
xj only.

Example 34.2 Consider the function

f(z,y) = Sae~ 2o +3y?

on the plane. Then
g(x,y) = 5e 203" _ 10ge2213Y’
T

215
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by the product differentiation rule, and similarly

of B
gy(ax y) = 30zye

—2x+3y2

at every point (z,y).

Example 34.3 When we want to find the partial derivative at a given point, it
is sometimes much quicker to first substitute the fixed coordinates of the point,
and the perform the differentiation. For instance, consider the function

f@,y,2) = V1422 +3y2 +222 - (5 —a® —y?) - e "%
on the three dimensional space, and find the partial derivative with respect to
z at the point P(2,1,2).
Of course, we could formally calculate the partial derivative function with

respect to z, and substitute the coordinates of the given point P. This is
immensely time consuming, and requires a lot of calculations.

A much quicker way is to first substitute x = 2, y = 1, then we get

f(2,1,2) =0
for every z. Thus
of
—(2,1,2) =0.
V21,9 =0

Clearly, the partial derivative is zero at any other point P(2,1, z) as well.

34.2 The derivative

Definition 34.4 Assume that the partial derivatives of the function f : R™ —
R exist at a point = (with respect to all variables). Then the vector

_[or ., of

F@) = 5@ (@)

is called the derivative of f at x.

Sometimes this vector is also called the gradient of f at x.

Example 34.5 For example for the function f on the three dimensional space:

f(z,y,2) = 2zy\/a? +y? + 22
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at the point P(2,1,2) we have

F2.1.2) = [26 40 8]

373’3

Verify this by first calculating the vector f’(x,y, 2), and then substituting the
coordinates of the point P(2,1,2).

Example 34.6 Let B be an n xn symmetric matrix and consider the quadratic

form:
Q(z) = (z, Bx) Zwaxe]

=1 j=1

where b;; is the element of the i-th row and j-th column of 5. Find the partial
derivative of () with respect to xx. In this case we have

8$k szkiﬂz + Zbijj

since all those terms have zero derivatives that do not contain xy. Making use
of the symmetry of B (namely b;; = bj;; for all indices), this can be rewritten
like

Txk = QZbijj

for every k =1,...,n. On the rlght—hand side we exactly have the k-th coordi-
nate of the product vector 2Bx. Therefore, the derivative of the quadratic form
Q is given by

Q'(z) = 2Bz
for every x. (Please observe that this result completely complies with the deriva-
tive of a quadratic function of one variable.)

34.3 Chain-rule

Let f : R™ — R be a function with continuous partial derivatives with respect
to all variables, and let g1,..., g, be differentiable functions on the real line.
Consider the composition

E(t) = f(g1(t), -, gn(t))
for t € R. For simplicity, introduce the notation
91(t)

g(t) = | :
gn(t)
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then we can write
F=foy

on the real line. Quite analogously to the elementary chain-rule (see Theorem
4.7) we can prove the following statement.

Theorem 34.7 (Chain-rule) Under the above conditions the composition
function F is differentiable, in particular

at every point t € R.

Example 34.8 Consider the following function on the plane:

fla,y) =2 —ay —2y°
and put
x = g1(t) = cost moreover y = go(t) =sint

By applying the Chain-rule, the derivative of the composition F' = fog is given
by
of

(g(t))sint + a—(g(t)) cost = —4sintcost +sin?t — cos? t .
Y

_of

) = Oz

Verify this by a direct substitution of g; and go and by performing the differen-
tiation. We come to the same result.

Example 34.9 Let f: R” — R be a function so that all partial derivatives
exist and they are continuous functions. Take a vector v € R™ and consider the
function
g(t) =z +tv
where z is a fixed vector. Find the derivative of FF = fog.
Obviously ¢'(t) = v, and the Chain-rule tells us that

F/(t) = (f/(a + tv),v).
In particular, at ¢ = 0 we have
"9
F(O) = (/@) = 3 5w
k=1

where the scalars v are the coordinates of the vector v.
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34.4 Second order partial derivatives

Whenever the partial derivative function of f : R” — R with respect to z; is
partially differentiable with respect to z; at a given point x then we can consider
the second order partial derivatives of f:

0% f
&riax]—

o2 f

@(Jf) or {;(x)

(z) or fii(x) and in case i = j:
The first is called mixed, the latter is called pure second order partial derivative.

Example 34.10 For instance, inthe case of the function
fxy) = 2? = 30%y? + 2¢°
the second order partial derivatives are

>’f *f 2
950y (z,9) zy and 952 (x) = =62~ + 12y

for each = and y.

Example 34.11 Reconsider the function F' defined in Example 34.9 and find
its second derivative F"(z + tv).

Since we have

F//(t) = Z Z 9702 (x + tv)vivj
j=li=1 ~J77*
in particular, for ¢ = 0 we have
n n
0% f
F"(0) = )00,
() Zzaaijal‘z( )2J
j=11i=1
This is precisely a quadratic form of the variable v, whose matrix is
82f &% f 8%f
Ta:f (J)) 0x10T2 (Jf) Ox10x, (33)
*f *f 2*f
A= O0x2011 (:E) ng(m) e Ox20Tn, (:E)
82f' 62f' an'
0,011 (.’L‘) 0,012 (aj) e ox?2 (.’17)
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By using this matrix, the above second derivative can be given in the form:
F"(0) = (v, Av)

for every vector v.

Definition 34.12 The above n x n matrix A is called the second derivative
of f at x. Its notation:

52f 82f 82f
@(l‘) 91072 (@) ... e (z)
o f %f 9% f
oy =| =0 @ me) e (@
o1 0*f 0*f
0z, 0T (LL') Oz, 0o <$) te 9x2 ((E)

Sometime the matrix f”/(x) is also called the Hesse-matriz of f at x.

34.5 Young’s theorem

Example 34.13 As it is easy to see in the case of the function f(z,y) =
223 + 52%y% — In(zy?) we have

%(x,y) = 622 +10zy® — 1/
0
a*]yc(%y) = 152y — 1/
2
%(x, y) = 12z4 10y —1/2?
0? (
87];(:6, y) = 3027y —2/y°
*f *f 2
m(% y) = Byom (z,y) = 30zy

In the example above, we see that the mixed second order partial derivatives
of f coincide. Our next theorem formulates that this is not a coincidence, it is
always true under relatively general conditions.

Theorem 34.14 (Young) If the second order partial derivatives of the func-
tion f with n variables exist, and they are continuous, then the Hesse-matriz
f"(x) is symmetric that is

o0 f % f

6xi8xj = 81‘18331 v
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for all indices i,j =1,2,...,n.

Proof. Clearly, it is enough to prove for two variables, and consider a
function f : R? — R that fulfills the conditions of the theorem. Take a fixed
vector v € R and introduce the functions

F)=fty+v) = fty),  GO)=flzt+ot) - flz1)

By our assumptions they are twice differentiable in a neighborhood of x and y
respectively, and we have the identity:

F(z+v)—F(z) =Gy+v) — G(y) . (34.1)
By the Mean value theorem, there exists a number 0 < t < 1 with
F(x +v) — F(x) = F'(z + tv)v,
and hence, in view of the definition of F' we get

Flatv)-F(@) = (filw+tv,y+o) = filz+tv,y)v
= (Diaf(z+tv,y)v+o(v))v.

Exploiting the continuity of the second derivative, we obtain

. Flz+v)—F(z) 0°f
gl_r{%) ,02 - axay(x7y) .

A completely similar argument gives us

. Gly+v)-Gly)  *f
31—% v2 - Oyox

(z,y) .

The identity (34.1) immediately implies

OF oy = 2 ()
Ox0y »Y) = Oydx ©Y

and we conclude that the second derivative is a symmetric matrix. O

Example 34.15 Consider the function f : R?® — R defined by
f(a,y,2) = 22%y + wyz — y*2?
Check that the second derivative at an arbitrarily given point (z,y, 2)
4y dx + 2 Y
f"(z,y,2) = | dz+2 —222 x—4dyz
Y r—4yz  —2y?

is a symmetric matrix.
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Example 34.16 Find the second derivative of the quadratic form

Q(z) = (z, Bx)

where B is a given n X n symmetric matrix.

On the one hand we have Q’(xz) = 2Bz, on the other hand this expression
is linear, therefore the (symmetric) Hesse-matrix is

Q"(r) =2B

at every point x.

Recitation and Exercises

1. Reading: Textbook-1, Sections 15.3, 15.4, 15.5, 15.6, 16.1 and 16.2

2. Homework: Textbook-1, Section 15.5, Exercises 1, 2, 3, 4, 5, 6, Section
16.1, Exercises 1, 2, 3, 4, 5 and 6.

3. Review: "Linear Algebra Exercises"



Chapter 35

Local extrema

35.1 Local extrema

Definition 35.1 The unit ball with center at the origin in the space R™ is
defined by
B={zeR":|z|| <1}

uite similarly, a ball with center at a € R™ and with radius » > 0 is given by
g

a+rB={zeR": |z —a| <r}

Consider a function f: R™ — R. A point a in the domain of f is said to be
a local minimum point of f, if there exists an € > 0 so that

f(z) = f(a)
at every point z of the domain with « € a +¢B (that is ||z — a|| < €).

The definition of a local maximum point can be formulated analogously. We
speak about global minimum (or maximum) if the inequality holds on the entire
domain.

35.2 First order necessary condition

In the following we assume that all partial derivatives of the function f : R™ — R
exist and they are continuous in a neighborhood of the point a.

Theorem 35.2 If a € R" is a local minimum point of f, then

of v _of
a—xl(a)—...—a(a)—o.

223
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Proof. Consider the basis vectors e, € R™ and set
F(t) = fla+teg).

On the one hand, F' has a local minimum point at ¢ = 0, on the other hand, F
is differentiable by the Chain-rule, namely

F'(t) = (f'(a+tex),ex) -
Consequently, we get

af

0= F(0) = (f'(a).er) = 5>

(a)

for all indices k =1,...,n. O

The above theorem tells us that we can find all extreme points of a function
in the solution set of a system of equations for partial derivatives. However, this
is only a necessary condition (just like in the one variable case). For instance,
consider the function

fla,y) = 2%y
then one solution to the system f{(z,y) = fi(z,y) =01is (x,y) = (0,0). Then
f(0,0)=0

which is neither a minimum nor a maximum. Indeed, in any neighborhood of
the origin the function f takes both positive and negative values.

We need second order (necessary and/or sufficient) conditions as well.

35.3 Second order necessary condition

In this section we assume that f : R®™ — R is twice continuously differentiable
in a neighborhood of the point a.

Theorem 35.3 Let us suppose that a is a local minimum point of f. Then
the Hesse-matriz of f at a is positive semidefinite.

Proof. Take any vector v € R™ and introduce the function
F(t) = f(a+tv)

By the assumptions F' is twice continuously differentiable, and if a is a local
minimum point of f, then ¢ = 0 is a local minimum point of F', which implies
F"(0) > 0. This means

0< F(0) = {f"(a)o,v)



35.4. SUFFICIENT CONDITION FOR LOCAL EXTREMA 225

Since the vector v € R™ was chosen arbitrarily, we conclude that the Hesse-
matrix is positive semidefinite. O

This result does not give a sufficient condition (only necessary) for the min-
imum. It is enough just to think of the function

flay) =2 +y*

At the point (0,0) both partial derivatives are zero, and the Hesse-matrix is
the zero matrix (which is positive semidefinite), but the origin is not a local
minimum point.

We can formulate an analogous statement for the local maximum, in that
case the Hesse-matrix is negative semidefinite.

35.4 Sufficient condition for local extrema

In this section we assume again that f : R™ — R is a function, whose second
order partial derivatives exist, and they are continuous in a neighborhood of the
point a.

Theorem 35.4 Let us suppose that at the point a all first order partial deriva-
tives of f are zero, and the Hesse-matriz f"(a) is positive definite. Then a is a
local minimum points of f.

Of course, the negative definite property of f”(a) means local maximum.

The proof of this theorem goes technically somewhat beyond this course,
and we skip it (it is not too hard though). We note however that it might be
tempting to think that our assumptions imply that the function

F(t) = f(a+ tv)

has a local minimum at ¢ = 0 for every vector v. Indeed, the sufficient condition
for this is that F”(0) > 0 for every v # 0, which is equivalent to f”(a) being
positive definite.

However, the trouble is that the fact that F’ has a local minimum at ¢t = 0
for every vector v does not imply the existence of the local minimum of f at a.
This unfortunate phenomenon is illustrated in the following example.

Example 35.5 Consider the following function on the plane:

x? ify=2%2and z >0

flz,y) =< —a? ify=2%and x <0
22 4+ y?  elsewhere

Clearly, the function f does not have a local minimum at the origin, because in
any neighborhood of the origin it takes both positive and negative values.
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However, if any nonzero planar vector v is given, then the function
F(t) = f((0,0) + tv)
has a strict local minimum at ¢ = 0. Indeed, any straight line passing through

the origin has a segment containing the origin that does not intersect the

parabola with equation y = x2.

It is highly recommended to create a picture!

35.5 Finding the extreme values

If we want to find the minimum and maximum points of a function with n
variables, we have to perform the following steps:

1. Find all partial derivatives.
2. Make them equal to zero, and solve the system of equations.
3. At every such point determine the Hesse-matrix.

4. If at a point the Hesse-matrix is positive definite, then it is a local mini-
mum point.

5. If at a point the Hesse-matrix is negative definite, then it is a local maxi-
mum point.

6. If at a point the Hesse-matrix is indefinite, then it is not a local extremum
(so-called "saddle point").

7. If at a point the Hesse-matrix is semidefinite, then further examinations
are needed. (Based on the derivatives this case is undecided.)

Example 35.6 Consider the following function on the plane:

flay) =2 +y°

The origin is the only critical point where both partial derivatives are zero. The
Hesse-matrix at the origin is
0 0
o[58

which is obviously positive semidefinite. Clearly, the origin is the (global) min-
imum point of the function.

If we slightly modify the function like:

flz,y) = —z* + 47
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then the origin is still the only critical point, and the corresponding Hesse-matrix
remains identical. However, the origin is no longer an extreme point, since in
any neighborhood of the origin the function takes both positive and negative
values. Such a point is called a saddle point of f.

Példa 35.7 Find all extreme values of the function:
f(:c,y,z) — (I2 _ 4y)e—(:c+y+z2)

By making the partial derivatives equal to zero, we get the following system of
equations:

fll,y,2) = (20— 2% 4 dy)e” @) = ¢
fo(@,y,2) = (—4—a®+4y)e HvH) —
fé(x7 Y, Z) = _22(372 — 4y)e—(a:+y+zz) =0

whose only solution is (z,y,2z) = (—=2,2,0)
Apply the second order condition. The Hesse-matrix is:

6 4 0
F(-2,2,00=| 4 4 0
00 8

and the corresponding quadratic form
627 + 819 + 4x3 + 823 = 227 + 4(xy + 12)? + 823

is positive definite. Consequently, the function f has a local minimum at the
critical point (—2,2,0).

35.6 The special case of two variables

Our second order sufficient condition for an extremum can be reformulated for
two variables in an "easy to use" way. The idea is that for two variables the
definite property can easily be verified.

Let f : R? = R be a function that fulfills the assumptions of Theorem 35.4,
and take a point a € R? where f’(a) = 0 (i.e. a critical point). The Hesse-matrix
of f at this point is

i (a) 1 (a)
F"(a) = 11 12
W= T la)

The characteristic polynomial of the Hesse-matrix is given by

P(A) =X = (ff1(a) + f3(a) A + f11(a) f35(a) — fi5(a)?
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where we have taken into account the symmetry of the Hesse-matrix.

As we know, this quadratic polynomial has purely real roots (we refer to
Theorem 32.11). By making use of the Viéte-formula, we can summarize our
observations in the statement below.

Theorem 35.8

o If f(a)fs(a) — fi5(a)? > 0, then the critical point a is a local extreme
point of the function f. This extreme point is a

— local minimum point, if f{;(a) > 0.

— local mazimum point, if f{}(a) <O0.
e It is not an extreme point (saddle point), if f{}(a)fih(a) — fi5(a)? < 0.

o Undecided, if f{\(a)f35(a) - fi5(a)* = 0.

In the latter circumstances we need further investigations.

Recitation and Exercises

1. Reading: Textbook-1, Chapter 17.

2. Homework: Textbook-1, Section 17.4, Exercises 1, 2, 3, 4, 5, 6, 7, 8 and
9.

3. Review: "Linear Algebra Exercises"



Chapter 36

Least squares method,
regression

In this section we exhibit an approximation method that provides the mathe-
matical background for regression. A detailed discussion of regression is given
in the statistics course.

36.1 Least squares method

Let us suppose that for the outcome of an experiment we carried out n obser-
vations, and at the different points x1, ..., x, we obtained the values y1, ..., yn.
We have the idea that a linear model can be fitted on these experimental data.
In other words, we are looking for a straight line with the equation y = mx + b
so that

maxy+b=1y may, +b=yn

In reality the data do not necessarily match our hypotheses, therefore, most of
the time such a straight line does not exist. If we consider this as a "measure-
ment error”" and we are satisfied with a "good" approximation, then we may
look for a line that fits the data the best possible way. By a good approximation
we mean that the expression

n
Flm,b) =" (ma; +b—y;)?
i=1
is minimal. This approximation procedure is called the least squares method.

ATTENTION! Why do not we use simply the sum of the gaps mz; — y;?
In fact, we could use the sum of the absolute values |mx; — y;|. This would be
theoretically absolutely correct, but it would make our computations a lot more
difficult.

229
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36.2 Analytic solution

Consider the function

n

f(m,b) = Z (mz; +b— yi)2 (36.1)
i=1
with given values z1,...,x, and yi,...,y, respectively, and find the values of

m and b so that f is a minimum.

By making the partial derivatives equal to zero, we get

8 n

a—i(m7 b) = ZQxi(mmi +b—y;)=0
i=1

a n

8—£(m,b) = Z2(mxi+b—yi) =0
i=1

This leads us to the following system of equations:

n n n
2
E Ty = m E x; +0b E Z;
i=1 i=1 i=1
n

p
Dy = md wi+bn (36.2)
=1

=1

and from this linear system the solutions m and b can be determined uniquely.
It is obvious that we really get a minimum point, since the function f is given
as a sum of complete squares.

We just note that if we calculate the second order partial derivatives, then
the Hesse-matrix of f is constant (independent of m and b), in particular

f”(m7b) _ |: ZZL:l szz Z?:l 22 :|

Zi:l 21’1 2n

We can easily see that the Hesse-matrix is positive definit, since the charateristic
equation

n n n 2
det (A —AE) = X2 — A (Zm? + 2n> +2ny 27 - (Zm) =0
=1 =1 =1

has only positive roots. Indeed, by exploiting the inequality between the arith-
metic and quadratic means (averages) we have

since the numbers z; are different. This implies that the constant term of the
above quadratic equation is positive.
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36.3 Algebraic solution

The minimum point that we obtained in the previous section, can be found by
using purely algebraic machinery as well. If we introduce the notations
z 1 (1

j— . p— m
’ Yy = : ’ = b

Tnp 1 Yn

A:

then we can easily verify that
mx1 +b—
Az —y= :
My, —I— b—yn
Therefore, the function f(m,b) at (36.1) can be written in the form:

f(z) = Az = y)?

We are looking for a vector z so that the distance between the vectors Az and
y is the smallest possible. In other words: we are looking for a vector in the
subspae im A that is closest to the vector y. Obviously, this distance is the
lowest possible if and only if the vector Az — y is orthogonal to the subspace

im A.
The orthogonality means that for both basis vectors e; of the space R?
(Az —y, Ae;) = 0.
By a slight modification we get
<ATAZ, ei> = <ATy, ei>
for ¢ = 1,2, which implies
AT Az = ATy .
Here the matrix AT A is clearly invertible, since it is a 2 x 2 matrix with a rank
of 2. Consequently,

b

By carrying out the indicated matrix operations we can easily check that we
retain the solution of the linear system (36.2). For practicing, perform this
calculation.

{ " ] — 2= (ATA) ATy,

36.4 Regression

Let X and Y be random variables, where the range of X is the set {z1,...,z,}.
Assume that observed conditional expectations of the variable Y at the points
Z1,...,Ty, are given by

yi = E(Y|X = x;)
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where P(X = x;) # 0 for all indices i =1,...,n.
By locating the points (z;,y;) in the coordinate system, we may have the

hypothesis that they approximately lie on the graph of a given function. If for
instance, this function is a straight line with equation

y=mzx+b

then we want to choose the unknown parameters m and b so that this approxi-
mation should be the best possible. This means that the expected value

E((mX+b-Y)?)
is a minimum (the smallest possible). For this purpose consider the function
g(m,b) = E((mX+b-Y)?
= E(m’X?+2bmX +b> —2mXY — 2bY +Y?)
= m?E(X?) +2bmE(X) +b* - 2mE(XY) — 2bE(Y) + E(Y?)

For the partial derivatives we have the following equations

g—i(m, b) = 2mE(X?)+2bE(X)—-2E(XY)=0
%(m, b) = 2mE(X)+2b0—2E(Y)=0

This linear system has a unique solution:
_ E(XY)-EX)E(Y) Covu(X,Y)

EX?)—EX)?  Var(X)
and Cov(X,Y
b=E(Y)— ‘%E(X)

It is easy to see that we really get a minimum point, since g is the expansion of
a complete square.

ATTENTION!

Verify that the Hesse-matrix of ¢ is positive definite! (And incidentally,
independent of the variables m and b.)

This function y = mx+0b is called the linear regression function. In statistics
other types of regression functions (for instance quadratic, or more complicated)
are also used.

Recitation and Exercises

1. Reading: Textbook-1, Chapter 17 and Textbook-2, Sections 11.1, 11.2 and
11.3.

2. Homework: Textbook-2, Exercises 11.1 through 11.14.

3. Review: "Linear Algebra Exercises"
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