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Preface

This book covers the necessary mathematics intended for students with ma-
jor in Economics. This course provides the fundamental mathematical back-
ground for studying Microeconomics, Macroeconomics, Statistics and other im-
portant topics in economics, or probabilistic or stochastic disciplines. The main
mathematical topics covered are Mathematical Analysis (Calculus), Probability
Theory, and Linear Algebra.

Most of the time, we avoid the rigorous mathematical proofs of our state-
ments. Instead, we rather present "justi�cations", which are intuitive, but not
necessarily precise. However, emphasis is placed on the correct formulations of
de�nitions. Some paragraphs indicated by the word ATTENTION cover some-
what more complicated arguments, their detailed explanations are given in the
classroom.

The text is illustrated by a large number of examples. On the one hand, they
help the deeper understanding. On the other hand, they give an idea, how to
apply them in practical situations. Therefore, the thorough study of examples
is a profoundly important homework assignment. Each chapter covers one week
of the semester, on a one week � one chapter basis.

In the end of each chapter references are given to the Textbook , which should
be interpreted the following way.

Textbook-1: K. Sydsaeter and P. Hammond,Mathematics for Economic Anal-
ysis, Prentice Hall, 1995, ISBN 0�13�583600�X, or any of the later edi-
tions.

Textbook-2 R. E. Walpole, R. H. Myers, S. L. Myers and K. Ye Probability
and Statistics for Engineers and Scientists, Prentice Hall, 2012, ISBN:
978�0�321�62911�1, or any of the later editions.

These textbooks are widely used at most recognized universities worldwide.

Some of the indicated homework exercises refer to the Textbook. Most of the
midterm quiz or �nal exam problems are similar or identical to those exercises.
More problems and exercises with solutions are posted on my web site. These
�les are updated regularly.

Special thanks to my colleagues Csaba Puskás, Éva Ernyes and Balázs
Fleiner, who read the manuscript, and their valuable remarks signi�cantly im-
proved the quality of the text. My thanks go to my former students as well,
their comments in or outside the classroom were extremely helpful for making
the text more understandable.

Budapest, September, 2020.

Peter Tallos



Contents

I First Semester: Di�erential and Integral Calculus 11

1 Sequences 13

1.1 Limits of sequences . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Sequences tending to in�nity . . . . . . . . . . . . . . . . . . . . 14

1.3 Squeezing Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Bounded and monotone sequences . . . . . . . . . . . . . . . . . 16

1.5 Euler's number e . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 In�nite Series 19

2.1 Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Geometric series . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Convergence based on examining the partial sums . . . . . . . . 20

2.4 Conditions for convergence . . . . . . . . . . . . . . . . . . . . . 21

2.5 Absolute convergence . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Quotient-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Limits and continuity 27

3.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Squeezing theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 One-sided limits . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Di�erentiation of functions 33

4.1 The derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Tangent lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Rules of di�erentiation . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Composition of functions . . . . . . . . . . . . . . . . . . . . . . 36

4.5 Chain-Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3



4 CONTENTS

5 The Mean Value Theorem 39

5.1 The inverse function . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Di�erentiability of the inverse function . . . . . . . . . . . . . . . 40

5.3 The exponential and logarithm functions . . . . . . . . . . . . . . 41

5.4 Necessary condition for an extremum . . . . . . . . . . . . . . . . 42

5.5 Lagrange's Mean Value Theorem . . . . . . . . . . . . . . . . . . 43

5.6 L'Hôpital's Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Complete analysis of functions 45

6.1 Monotone functions . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Finding extreme points . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3 Higher order derivatives . . . . . . . . . . . . . . . . . . . . . . . 47

6.4 Second order conditions . . . . . . . . . . . . . . . . . . . . . . . 48

6.5 Convex and concave functions . . . . . . . . . . . . . . . . . . . . 50

7 Integration 53

7.1 The inde�nite integral . . . . . . . . . . . . . . . . . . . . . . . . 53

7.2 Basic integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.3 Initial value problems . . . . . . . . . . . . . . . . . . . . . . . . 55

7.4 De�nite integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.5 Newton-Leibniz-formula . . . . . . . . . . . . . . . . . . . . . . . 57

8 Methods of integration 59

8.1 Integration by parts . . . . . . . . . . . . . . . . . . . . . . . . . 59

8.2 Integration by parts in de�nite integrals . . . . . . . . . . . . . . 60

8.3 Integration by substitution . . . . . . . . . . . . . . . . . . . . . 61

8.4 Substitution in de�nite integrals . . . . . . . . . . . . . . . . . . 62

8.5 Linear di�erential equations . . . . . . . . . . . . . . . . . . . . . 62

9 Extension of integration 65

9.1 Improper integrals . . . . . . . . . . . . . . . . . . . . . . . . . . 65

9.2 Improper integrals on the real line . . . . . . . . . . . . . . . . . 66

9.3 Integration by parts in improper integrals . . . . . . . . . . . . . 68

9.4 Harmonic series revisited . . . . . . . . . . . . . . . . . . . . . . . 69

10 Power series 71

10.1 Sum of power series . . . . . . . . . . . . . . . . . . . . . . . . . 71

10.2 Radius of convergence . . . . . . . . . . . . . . . . . . . . . . . . 72

10.3 Di�erentiability of power series . . . . . . . . . . . . . . . . . . . 73

10.4 Finding the coe�cients . . . . . . . . . . . . . . . . . . . . . . . . 75

10.5 Taylor-series of the exponential function . . . . . . . . . . . . . . 75



CONTENTS 5

11 Functions of two variables 77

11.1 Partial derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . 77

11.2 Tangent planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

11.3 Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

11.4 Local extrema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

11.5 First order necessary condition . . . . . . . . . . . . . . . . . . . 81

12 Constrained extrema 83

12.1 Implicit functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

12.2 Constrained minima . . . . . . . . . . . . . . . . . . . . . . . . . 85

12.3 Lagrange multipliers . . . . . . . . . . . . . . . . . . . . . . . . . 86

12.4 Solving the constrained minimization problem . . . . . . . . . . . 87

II Second Semester: Probability Theory 89

13 Probability 91

13.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

13.2 The sample space . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

13.3 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

13.4 Operations with events . . . . . . . . . . . . . . . . . . . . . . . . 92

13.5 Probability space . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

14 Sampling methods 97

14.1 Classical probability spaces . . . . . . . . . . . . . . . . . . . . . 97

14.2 Sampling without replacement . . . . . . . . . . . . . . . . . . . 99

14.3 Sampling with replacement . . . . . . . . . . . . . . . . . . . . . 100

14.4 The Bernoulli experiment . . . . . . . . . . . . . . . . . . . . . . 101

15 Conditional probability and Bayes' Rule 103

15.1 Conditional probability . . . . . . . . . . . . . . . . . . . . . . . 103

15.2 Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

15.3 Theorem of Total Probability . . . . . . . . . . . . . . . . . . . . 105

15.4 Bayes' Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

16 Random variables and distributions 109

16.1 Random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

16.2 Distribution of discrete variables . . . . . . . . . . . . . . . . . . 110

16.3 The cumulative distribution function . . . . . . . . . . . . . . . . 111

16.4 The density function . . . . . . . . . . . . . . . . . . . . . . . . . 112



6 CONTENTS

17 Mean and variance 115

17.1 Mean of discrete distributions . . . . . . . . . . . . . . . . . . . . 115

17.2 Mean of in�nite distributions . . . . . . . . . . . . . . . . . . . . 117

17.3 Mean of continuous distributions . . . . . . . . . . . . . . . . . . 118

17.4 Basic properties of the mean . . . . . . . . . . . . . . . . . . . . 118

17.5 Variance and standard deviation . . . . . . . . . . . . . . . . . . 119

18 Special discrete distributions 121

18.1 Characteristic distribution . . . . . . . . . . . . . . . . . . . . . . 121

18.2 Binomial distribution . . . . . . . . . . . . . . . . . . . . . . . . . 122

18.3 Hypergeometric distribution . . . . . . . . . . . . . . . . . . . . . 122

18.4 Geometric distribution . . . . . . . . . . . . . . . . . . . . . . . . 123

18.5 Poisson distribution . . . . . . . . . . . . . . . . . . . . . . . . . 124

19 Special continuous distributions 127

19.1 Uniform distribution . . . . . . . . . . . . . . . . . . . . . . . . . 127

19.2 Exponential distribution . . . . . . . . . . . . . . . . . . . . . . . 128

19.3 The standard normal distribution . . . . . . . . . . . . . . . . . . 129

19.4 Normal distribution . . . . . . . . . . . . . . . . . . . . . . . . . 131

20 Joint distributions 133

20.1 Joint cumulative distribution function . . . . . . . . . . . . . . . 133

20.2 Discrete joint distributions . . . . . . . . . . . . . . . . . . . . . . 133

20.3 Continuous joint distributions . . . . . . . . . . . . . . . . . . . . 135

20.4 Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

20.5 Conditional distributions . . . . . . . . . . . . . . . . . . . . . . . 138

21 Covariance and correlation 139

21.1 Mean of a sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

21.2 Mean of a product . . . . . . . . . . . . . . . . . . . . . . . . . . 140

21.3 Variance of a sum . . . . . . . . . . . . . . . . . . . . . . . . . . 141

21.4 Covariance and correlation . . . . . . . . . . . . . . . . . . . . . . 142

21.5 Theorem of Total Expectation . . . . . . . . . . . . . . . . . . . . 143

22 Sums of random variables 145

22.1 Sums of discrete variables . . . . . . . . . . . . . . . . . . . . . . 145

22.2 Sums of continuous variables . . . . . . . . . . . . . . . . . . . . 145

22.3 The Poisson process . . . . . . . . . . . . . . . . . . . . . . . . . 147

22.4 Sum of standard normal distributions . . . . . . . . . . . . . . . 148

22.5 Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . 149



CONTENTS 7

23 Law of Large Numbers 151

23.1 Chebyshev's Theorem . . . . . . . . . . . . . . . . . . . . . . . . 151

23.2 Chebyshev's Theorem in equivalent form . . . . . . . . . . . . . . 153

23.3 Poisson approximation . . . . . . . . . . . . . . . . . . . . . . . . 154

23.4 Law of Large Numbers . . . . . . . . . . . . . . . . . . . . . . . . 154

III Third Semester: Linear algebra 157

25 Vector spaces and subspaces 159

25.1 The vector space Rn . . . . . . . . . . . . . . . . . . . . . . . . . 159

25.2 Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

25.3 Generated subspace . . . . . . . . . . . . . . . . . . . . . . . . . 161

25.4 Linear independence . . . . . . . . . . . . . . . . . . . . . . . . . 162

26 Linear independence and basis 165

26.1 Generating system . . . . . . . . . . . . . . . . . . . . . . . . . . 165

26.2 Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

26.3 Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

26.4 Gauss-Jordan-elimination . . . . . . . . . . . . . . . . . . . . . . 168

27 Linear mappings and matrices 171

27.1 Linear mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

27.2 Matrix of a linear map . . . . . . . . . . . . . . . . . . . . . . . . 172

27.3 Rank and degree of freedom of a matrix . . . . . . . . . . . . . . 173

27.4 Multiplication of matrices . . . . . . . . . . . . . . . . . . . . . . 175

28 Linear systems 177

28.1 Homogeneous systems . . . . . . . . . . . . . . . . . . . . . . . . 177

28.2 Inhomogeneous systems . . . . . . . . . . . . . . . . . . . . . . . 178

28.3 Inverse of a matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 181

28.4 Finding the inverse . . . . . . . . . . . . . . . . . . . . . . . . . . 182

29 Eigenvalue, eigenvector 185

29.1 Eigenvalue, eigenvector . . . . . . . . . . . . . . . . . . . . . . . . 185

29.2 Eigensubspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

29.3 Finding eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . 187

29.4 Independent eigenvectors . . . . . . . . . . . . . . . . . . . . . . 188

29.5 Diagonal form of transformations . . . . . . . . . . . . . . . . . . 188



8 CONTENTS

30 Determinant 191

30.1 Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

30.2 The determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

30.3 Properties of the determinant . . . . . . . . . . . . . . . . . . . . 192

30.4 Evaluating the determinant . . . . . . . . . . . . . . . . . . . . . 194

30.5 Finding the eigenvalues . . . . . . . . . . . . . . . . . . . . . . . 195

31 Scalar product 197

31.1 Scalar product . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

31.2 Angle of vectors, perpendicularity . . . . . . . . . . . . . . . . . . 198

31.3 Orthogonal systems . . . . . . . . . . . . . . . . . . . . . . . . . 199

31.4 Gram-Schmidt-procedure . . . . . . . . . . . . . . . . . . . . . . 200

31.5 Orthogonal complement . . . . . . . . . . . . . . . . . . . . . . . 200

32 The spectral theorem 203

32.1 Transpose of a matrix . . . . . . . . . . . . . . . . . . . . . . . . 203

32.2 Orthogonal matrices . . . . . . . . . . . . . . . . . . . . . . . . . 204

32.3 Symmetric matrices . . . . . . . . . . . . . . . . . . . . . . . . . 205

32.4 Spectral theorem of symmetric matrices . . . . . . . . . . . . . . 206

33 Quadratic forms 209

33.1 Quadratic forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

33.2 Symmetric matrix of a quadratic form . . . . . . . . . . . . . . . 210

33.3 De�nite quadratic forms . . . . . . . . . . . . . . . . . . . . . . . 211

33.4 Completing the square . . . . . . . . . . . . . . . . . . . . . . . . 212

33.5 De�nite property based on eigenvalues . . . . . . . . . . . . . . . 213

34 Functions with several variables 215

34.1 Partial derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . 215

34.2 The derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

34.3 Chain-rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

34.4 Second order partial derivatives . . . . . . . . . . . . . . . . . . . 219

34.5 Young's theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

35 Local extrema 223

35.1 Local extrema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

35.2 First order necessary condition . . . . . . . . . . . . . . . . . . . 223

35.3 Second order necessary condition . . . . . . . . . . . . . . . . . . 224

35.4 Su�cient condition for local extrema . . . . . . . . . . . . . . . . 225

35.5 Finding the extreme values . . . . . . . . . . . . . . . . . . . . . 226

35.6 The special case of two variables . . . . . . . . . . . . . . . . . . 227



CONTENTS 9

36 Least squares method, regression 229

36.1 Least squares method . . . . . . . . . . . . . . . . . . . . . . . . 229

36.2 Analytic solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

36.3 Algebraic solution . . . . . . . . . . . . . . . . . . . . . . . . . . 231

36.4 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231



10 CONTENTS



Part I

First Semester: Di�erential

and Integral Calculus

11





Chapter 1

Sequences

1.1 Limits of sequences

The function
a : N→ R

de�ned on the set of natural numbers N is called a (in�nite) sequence.

We use the notation an for the n-th element.

Some examples: an = n, an = 1
n , an = n+1

n+2 .

De�nition 1.1 The sequence an is said to be convergent and tends to A, if
for any ε > 0, there exists an index N , such that,

|an −A| < ε.

whenever n ≥ N .

If the sequence is convergent then A is called the limit of the sequence an
and we write

lim
n→∞

an = A .

If there is no such real number A, then the sequence is called divergent.

Theorem 1.2 If the sequences an and bn are convergent and limn→∞ an = A
and limn→∞ bn = B then

• limn→∞(an ± bn) = A±B,

• limn→∞(an · bn) = A ·B,

• if B 6= 0, then limn→∞
an
bn

= A
B

13



14 CHAPTER 1. SEQUENCES

Example 1.3 Let us consider the sequence an = 1
n . For an arbitrary ε > 0

let N be any integer, greater than 1/ε. Then if n ≥ N

1

n
< ε ,

therefore, in view of De�nition 1.1

lim
n→∞

1

n
= 0 .

Example 1.4 In a similar way we can �nd the limits of other sequences. Let
us consider for example the sequence

an =
2n2 + 5

n2 − 6n+ 8
.

If we divide both the numerator and the denominator by n2, then we have

an =
2 + 5/n2

1− 6/n+ 8/n2
,

where the limit of the numerator is 2 and the limit of the denominator is 1.
Therefore

lim
n→∞

an = 2 .

Every irrational number can be written as a limit of a sequence of rational
numbers. For example, consider the sequence a1 = 1.4, a2 = 1.41, a3 =
1.414, a4 = 1.4142 . . . then

lim
n→∞

an =
√

2

Indeed, according to De�nition 1.1, if ε = 10−N , then |an −
√

2| < ε for n ≥ N .

A typical example for a sequence which has no limit is

an = (−1)n.

1.2 Sequences tending to in�nity

Let us investigate the sequence

an = 2n+ 5.
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The terms of this sequence are greater than any given number K if n is large
enough. In that case, we say, that the limit of the sequence is in�nity. We use
the symbol ∞ to denote in�nity.

De�nition 1.5 We say that the sequence an approaches +∞ if for any real
number K there exists an index N such that for every n ≥ N we have an > K
This is expressed in the formula

lim
n→∞

an = +∞ ,

In a completely analogous way we can de�ne the fact that a sequence ap-
proaches −∞, that is limn→∞ an = −∞.

1.3 Squeezing Theorem

Often the limit of a sequence can be determined with the aid of other sequences
the limits of which are known. Such a situation is described by the Squeezing
Theorem.

Theorem 1.6 (Squeezing Theorem) Let an, bn and cn be sequences such
that for every index n

an ≤ bn ≤ cn
holds and, moreover, the sequences an and cn converge to the same limit A.
Then the sequence bn is also convergent and limn→∞ bn = A.

Example 1.7 Let a > 1 be a real number and consider the sequence bn = n
√
a.

Since a > 1, the elements of the sequence can be written in the form

n
√
a = 1 + hn ,

where hn > 0 for every n. By the Binomial Theorem we get

a = (1 + hn)n > 1 + nhn .

where we skipped all other positive terms on the right-hand side. Rearranging
the inequality it follows that

0 < hn <
a− 1

n
.

The expression on the right-hand side tends to zero, hence, by the Squeezing
Theorem hn → 0, that is n

√
a→ 1.

Obviously, if 0 < a ≤ 1, then we can carry out the same argument, by taking
reciprocals of the elements of the sequence. This shows that our theorem holds
for any constant a > 0.
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1.4 Bounded and monotone sequences

Clearly, the elements of a sequence approaching in�nity cannot stay between
two real numbers. We introduce the following de�nition.

De�nition 1.8 The sequence an is bounded from above, if there is a real
number K such that an ≤ K for every index n. If there is a real number K
such that an ≥ K for every index n, the sequence is said to be bounded from
below. A sequence is called bounded if it is bounded both from above and from
below.

Example 1.9 Decide whether the sequence

an =
2n√

4n2 + 5 + 8

is bounded or not? Dividing both the numerator and the denominator by 2n
we get

an =
1√

1 + 5/4n2 + 8/2n
,

hence 0 ≤ an ≤ 1. Thus the sequence is bounded. It is also clear that the
smallest upper bound of the sequence is 1, while 0 is a lower bound, but not the
greatest one.

Monotone sequences have special importance.

De�nition 1.10 We say that the sequence an is monotone increasing, if
an ≤ an+1 for every index n. A decreasing sequence is de�ned similarly. A
sequence that is either increasing or decreasing is called monotone.

Example 1.11 Consider the sequence

an =
2n− 1

n+ 2
.

We have

an =
2n+ 4− 5

n+ 2
= 2− 5

n+ 2
.

The value of the fraction subtracted from 2 decreases if n increases, therefore
the sequence an is increasing. It is also clear that the sequence is bounded from
above and its smallest upper bound is 2. Moreover,

lim
n→∞

an = 2 .
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Our next theorem states that this property is characteristic for bounded
monotone sequences.

Theorem 1.12 An increasing sequence which is bounded from above is con-
vergent.

An analogous statement holds for decreasing sequences that are bounded
from below.

We do not prove this theorem, but we note it is based on the property of real
numbers that we always have a least upper bound (among the in�nitly many
upper bounds) which turns out to be the limit of the sequence.

Analogous theorem applies for monotone decreasing and bounded from below
sequences.

1.5 Euler's number e

In many applications of mathematics the sequence

an =

(
1 +

1

n

)n
. (1.1)

appears frequently. We can show that this sequence is monotone increasing,
bounded from above, and consequently convergent.

To verify these properties we exploit the inequality between the arithmetic
and geometric means. In particular, if x1, . . . , xn are positive numbers, then

x1 . . . xn ≤
(
x1 + . . .+ xn

n

)n
for every integer n. Equality holds if and only if x1 = . . . = xn that is, all the
numbers are equal.

Proposition 1.13 The sequence (1.1) is strictly monotone increasing and
bounded from above.

Proof. Let n be a given integer. Consider the n + 1 pieces of positive
numbers

x1 = 1 +
1

n
, . . . , xn = 1 +

1

n
, xn+1 = 1

which are not all equal. Using the inequality for the arithmetic and geometric
means, we have(

1 +
1

n

)n
<

(
n+ 1 + 1

n+ 1

)n+1

=

(
1 +

1

n+ 1

)n+1
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which exactly says that the sequence is strictly monotone increasing.

Second, consider the n+ 2 pieces of positive numbers

x1 = 1 +
1

n
, . . . , xn = 1 +

1

n
, xn+1 =

1

2
, xn+2 =

1

2

which are not all equal. Using the inequality again, we have

1

4
·
(

1 +
1

n

)n
<

(
n+ 1 + 1

n+ 2

)n+2

= 1

Rearranging the inequality we obtain an < 4, that means that the sequence is
bounded from above. Consequently, the sequence (1.1) is convergent. �

We use the notation e for the limit of this sequence. More elaborate compu-
tations show that e is irrational, and

e = 2.7182...

Proposition 1.14 Let α be an arbitrarily given real number. Then

lim
n→∞

(
1 +

α

n

)n
= eα

Example 1.15 Consider the sequence

an =

(
2n+ 1

2n+ 3

)n
Then, by rewriting the sequence we get

an =

(
2n+ 1

2n+ 3

)n
=

(
1 + 1/2

n

)n
(

1 + 3/2
n

)n → e1/2

e3/2

and hence limn→∞ an = e−1.

Study at home:

1. Careful study of Mathematical Analysis Exercises.

2. Study the exercises below.

3. Textbook-1, Chapter 1 and Section 6.4.



Chapter 2

In�nite Series

2.1 Series

De�nition 2.1 Let ak be a real in�nite sequence and compose the formal sum
∞∑
k=1

ak . (2.1)

This symbol is called an in�nite series (or just simply a series).

The meaning of this expression should be clari�ed, because only the addition
of �nitely many real numbers was de�ned so far.

For any natural number n de�ne the n-th partial sum of the series (2.1) as
follows:

Sn =

n∑
k=1

ak (2.2)

This way we created a real sequence Sn.

De�nition 2.2 The in�nite series (2.1) is said to be convergent and its sum
is S, if the sequence Sn is convergent and its limit is S. In this case we use the
notation:

S =

∞∑
k=1

ak

Otherwise the series is said to be divergent.

Please note that the in�nite series is divergent if the sequence Sn has no
limit or its limit is not �nite. For instance, if ak = (−1)k for all k then

Sn =

n∑
k=1

(−1)k = 0 if n is even and Sn =

n∑
k=1

(−1)k = −1 if n is odd

19
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therefore, the sequence Sn has no limit and the series is obviously divergent.

2.2 Geometric series

Example 2.3 (Geometric series) Let r be a real number and consider the
in�nite geometric series with common ratio r:

∞∑
k=0

rk

The nth partial sum of this series is

Sn =

n−1∑
k=0

rk =

{
1−rn
1−r if r 6= 1

n if r = 1

It is well known about the sequence an = rn that rn → 0 if |r| < 1, rn → 1
if r = 1 and otherwise the sequence is divergent. Therefore, we get that the
geometric series is convergent if and only if |r| < 1 and then its sum is given by

S =

∞∑
k=0

rk =
1

1− r

2.3 Convergence based on examining the partial

sums

Example 2.4 Consider the series

∞∑
k=2

1

k(k − 1)
. (2.3)

The terms of this series can be rewritten in this form:

1

k(k − 1)
=

1

k − 1
− 1

k

Observe that the n-th partial sum will be given like:

Sn = (1− 1/2) + (1/2− 1/3) + . . .+ (1/(n− 1)− 1/n) = 1− 1/n

The limit of this sequence is obviously 1 (the negative and positive identical
terms cancel each other) and we conclude that the series is convergent and its
sum is S = 1.
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Example 2.5 Try to apply the above argument for the series
∞∑
k=2

1

k3 − k

and by eliminating the terms that cancel each other, �nd the sum of the series.

2.4 Conditions for convergence

Theorem 2.6 (Necessary condition for convergence) Assume that the
series

∞∑
k=1

ak

is convergent. Then limk→∞ ak → 0.

Example 2.7 This theorem formulates a necessary condition which may not
be su�cient. For instance, we can show that the series

∞∑
k=1

1

k

ful�lls the necessary condition but it is divergent. This series is called the
Harmonic series.

Indeed, let an integer n be given, and consider the 2n-th partial sum of the
Harmonic series. Rearrange the terms in the following way

S2n = 1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+ . . .+

1

8

)
+ . . .+

(
1

2n−1 + 1
+ . . .+

1

2n

)
,

where every expression within the parentheses goes up to the next power of 2.
The sum of terms inside the parentheses is always bigger than 1/2, and we have
exactly n pairs of parentheses, hence

S2n > 1 +
1

2
n .

That tells us that sequence of partial sums is not bounded and therefore, the
series is divergent.

Theorem 2.8 (Su�cient condition for convergence) Let us suppose that
for each index k we have ak ≥ 0 and the series

∞∑
k=1

ak
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is convergent. If for every index k we have 0 ≤ bk ≤ ak, then the series

∞∑
k=1

bk

is also convergent.

Indeed, on the one hand the sequence of partial sums Sn =
∑n
k=1 bk is

monotone increasing, and on the other hand it is also bounded. Consequently,
the series is convergent.

In an analogous way we may formulate a su�cient condition for divergence:
if all terms of a series are bigger than the nonnegative terms of a divergent
series, than it is divergent as well.

Example 2.9 As an application consider the series
∑∞
k=1 1/k2. Since for

every k > 1
1

k2
<

1

k(k − 1)

then for the n-th partial sums we get

Sn =

n∑
k=1

1

k2
< 1 +

n∑
k=2

1

k(k − 1)

According to the su�cient condition we conclude that this series is convergent,
and for its sum we have S < 2.

In general, it can be veri�ed that the series
∑∞
k=1 1/kα is divergent, if α ≤ 1,

and it is convergent if α > 1 (see more details in Chapter 9).

2.5 Absolute convergence

In this section we examine series that may contain positive and terms as well.
Consider the series

∞∑
k=1

ak (2.4)

where the terms ak are not necessarily all nonnegative.

De�nition 2.10 We say that the series (2.4) is absolutely convergent, if the
series

∞∑
k=1

|ak|

is convergent.
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Theorem 2.11 If a series is absolutely convergent, then it is convergent as
well.

We do not go into the details of the proof. As a justi�cation we note the
following. If Sn denotes the sum of the absolute values of the �rst n terms, then
by our condition it is convergent and

lim

n∑
k=1

|ak| = limSn = S .

Let Rn and Tn denote the sum of the negative and positive terms respectively
from the �rst n terms of the series

∑∞
k=1 ak. Then Rn is monotone decresing,

while Tn is monotone increasing, and both sequences are bounded, since

Rn ≥ −S and Tn ≤ S .

Therefore both sequences are convergent, in notation: limRn = R, and limTn =
T . Thus the limit of of Sn can be given as:

limSn = lim

n∑
k=1

ak = lim(Tn +Rn) = T +R ,

and we deduce that the series is really convergent.

The example below shows that the converse of our previous theorem is not
necessarily true.

Example 2.12 Consider the following series with alternating signs:

∞∑
k=1

(−1)k−1

k

Clearly, this series is not absolutely convergent, since the series with the absolute
values of the terms is identical to the Harmonic series, which is divergent.

We show however, that the series above is convergent. Indeed, the sum of
the terms with even indices:

S2n =

(
1− 1

2

)
+

(
1

3
− 1

4

)
+ . . .+

(
1

2n− 1
− 1

2n

)
=

=
1

2
+

1

12
+ . . .+

1

2n(2n− 1)
.

In view of Example 2.3, this sequence is monotone increasing and bounded from
above, because S2n < 2. Hence, it is convergent. Denote its limit by

limS2n = S .
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On the other hand, for the sum of the terms with odd indices we have

S2n−1 = S2n +
1

2n

therefore, limS2n−1 = S, which means that limSn = S. This implies that the
series is convergent.

2.6 Quotient-test

In this section we formulate a very useful su�cient condition for the convegence
or divergence of in�nite series. Create the absolute values of the quotients of
the consecutive terms of the series

∞∑
k=1

ak

and suppose that the limit

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = α

exists.

Theorem 2.13 (Quotient-test)

• If α < 1, then the series is absolutely convergent.

• If α > 1, then the series is divergent.

• If α = 1, then both cases can occur.

Proof. If α < 1, then choose a real number β with α < β < 1. Then from
a certain index N we have ∣∣∣∣ak+1

ak

∣∣∣∣ < β

for every k ≥ N . Then goin step-by-step backward we get

|ak+1| < β|ak| < β2|ak−1| < . . . < βk−N+1|aN |

So, for the n+ 1-th partial sum

Sn+1 =

n∑
k=0

|ak+1| <
N−1∑
k=0

|ak+1|+ |aN | ·
n∑

k=N

βk−N+1

where the last sum is the partial sum of a convergent series (in view of 0 < β <
1), and consequently bounded if n→∞. This proves the statement.
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If α > 1, then the the proof can be carried out similarly, with a choice of
1 < β < α we can come up with an estimate with a divergent geometric series.
�

Example 2.14 In this example we demonstrate that in the case of α = 1
nothing can be stated about the convergence of the series.

Indeed, if the divergent Harmonic series is considered, then for ak = 1/k we
have

ak+1

ak
=

k

k + 1
→ 1 if k →∞ .

However, if we take the convergent series, where ak = 1/k2, then

ak+1

ak
=

(
k

k + 1

)2

→ 1 if k →∞ ,

which demonstrates that both cases can occur.

Example 2.15 Find out if the series

∞∑
k=1

k2 · 2k

k!

is convergent or not. Use the Quotient-rule:

ak+1

ak
=

(k + 1)22k+1

(k + 1)!
· k!

k22k
= 2

(
k + 1

k

)2

· 1

k + 1
→ 0

Thus α = 0 < 1, which tells us that the series is convergent.

Study at home:

1. Review the "Mathematical Analysis Exercises"

2. Additional homework: check the exercises below

3. Textbook-1, Section 6.5.
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Chapter 3

Limits and continuity

3.1 Basic concepts

In the subsequent chapter we study the limit of functions f : R → R. Let x0
be a point (possibly equal to ±∞) for which there exists a sequence xn in the
domain of f such that xn 6= x0 and xn → x0.

De�nition 3.1 The limit of the function f at the point x0 is said to be A
(which can be ±∞) and in notation

lim
x→x0

f(x) = A

if for any sequence xn from the domain of f whenever xn → x0, xn 6= x0, then
f(xn)→ A.

ATTENTION!

Please note that the limit of f at x0 has nothing to do with f(x0). The
function may not even be de�ned at x0. However, in some cases the limit may
be equal to f(x0).

Theorem 3.2 If the functions f and g have limits at x0 and limx→x0
f(x) = A

and limx→x0
g(x) = B then

• limx→x0
(f ± g)(x) = A±B,

• limx→x0
(f · g)(x) = A ·B,

• if B 6= 0 then limx→x0

f
g (x) = A

B ,

• if A 6= 0 and B = 0 then limx→x0

f
g (x) = ±∞.

27
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Example 3.3 Determine the limit

lim
x→2

x2 − 4

x− 2
.

This function is not de�ned for x = 2 but it is equal to x+2 at any point x 6= 2.
Therefore it is easily seen that

lim
x→2

x2 − 4

x− 2
= lim
x→2

(x+ 2) = 4 .

Example 3.4 Consider the function f(x) = 1/x. This function is not de�ned
at x = 0. On the other hand, for any sequence xn > 0, xn → 0 from the domain
we have f(xn)→ +∞ while f(−xn)→ −∞. Thus this function has no limit at
x = 0, that is

lim
x→0

1

x

does not exist.

Example 3.5 Consider the following limit:

lim
x→+∞

2x4 − 5x3 + x− 8

8x3 − x2 + 12

Dividing both the numerator and denominator by x3 we get the expression

2x− 5 + 1/x2 − 8/x3

8− 1/x+ 12/x3
.

Now for any sequence xn → +∞ the limit of the numerator is +∞, while the
limit of the denominator equals 8, thus the fraction tends to +∞.

Very similarly, we can show that the limit of the fraction is −∞, if x→ −∞.

Example 3.6 Show that

lim
x→+∞

(
√

1 + x2 − x) = 0 .

Indeed, √
1 + x2 − x =

(√
1 + x2 − x

) √1 + x2 + x√
1 + x2 + x

=
1√

1 + x2 + x

and the expression on the right hand side approaches 0 if x→ +∞.
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3.2 Squeezing theorem

In this section we formulate the Squeezing theorem for limits of functions.

Theorem 3.7 (Squeezing Theorem) Let f , g and h be real functions such
that for any x

f(x) ≤ g(x) ≤ h(x)

and furthermore, limx→x0 f(x) = limx→x0 h(x) = A. Then the limit of the
function g at x0 exists, and

lim
x→x0

g(x) = A .

Example 3.8 Find the limit

lim
x→0

sinx

x

This is an even function, therefore it is enough to consider positive values of x. A
geometric interpretation (open the Figures �le!) shows that for all 0 < x < π/2

sinx < x < tanx .

Dividing this inequality by sinx, we get

1 <
x

sinx
<

1

cosx
.

By taking the reciprocals, we obtain

cosx <
sinx

x
< 1

for every 0 < x < π/2. In view of the Squeezing Theorem we receive

lim
x→0

sinx

x
= 1

3.3 One-sided limits

In some situations the limit of a function at a given point does not exist, but
we still can speak about a one-sided limit.

De�nition 3.9 We say that the right-hand limit of f at the point x0 exists
and is equal to

lim
x→x0+

f(x) = A
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if for any sequence xn → x0, xn > x0 from the domain of f we have f(xn)→ A.
The left-hand limit is de�ned analogously.

It is obvious from the de�nition that if at a point the limit exists, then both
one-sided limits exist, and they are equal.

Example 3.10 Consider the function:

f(x) =
2x+ 1

x− 2

It is easy to see that if xn approaches 2 from the right then f(xn)→ +∞, while
if xn approaches 2 from the left then f(xn)→ −∞. Therefore

lim
x→2−

f(x) = −∞ and lim
x→2+

f(x) = +∞ .

We can say that the limit of a function at a point exists if and only if both
one-sided limits exist, and they are equal (the common value is the limit).

3.4 Continuity

De�nition 3.11 Consider a function f that is de�ned on an interval. We say
that the function f is continuous at a point x0 of its domain if

lim
x→x0

f(x) = f(x0) .

If f is not continuous at a point x0 of its domain, then it is said that the function
has a discontinuity there.

A function is simply called continuous, if it is continuous at every point of
the domain.

ATTENTION!

Continuity is de�ned only at points in the domain of the function. For
instance the function f(x) = 1/x is continuous at each point of its domain, that
is at each x 6= 0. The point x0 = 0 is not in the domain of f , so we cannot
speak of discontinuity here.

On the other hand, f cannot be de�ned at x0 = 0 so that it becomes
continuous, as the limit of the function does not exist there.
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Functions obtained from continuous function by composition or by elemen-
tary operations (addition, subtraction, multiplication, division) are also con-
tinuous except maybe at points, where the denominator of the fraction equals
zero.

Example 3.12 For instance, consider the following function:

f(x) =

{
1−cos x
x2 if x 6= 0

1
2 if x = 0

It is clear that this function is continuous for all x 6= 0, furthermore

1− cosx

x2
=

1− cos2 x

(1 + cosx)x2
=

(
sinx

x

)2

· 1

1 + cosx
.

This shows that the limit of the function at 0 equals 1/2. Thus, this function is
continuous on the whole real line.

We think of a continuous function as one whose graph can be drawn by an
unbroken curve (without lifting the pencil from the paper). This is expressed
in Bolzano's theorem.

Theorem 3.13 (Bolzano) Let f be a continuous function on the �nite interval
[a, b], and suppose that f(a) and f(b) have di�erent signs. Then there exists a
point c ∈ (a, b) such that f(c) = 0.

We do not prove the theorem, but note that a simple idea would be bisecting
the interval, and selecting the part where f has opposite signs at the endpoints.
If we keep doing this in�nitely many times, we receive a sequence of intervals, so
that each one is the half of the preceding interval. We think that the intersection
of the intervals reduces to a single point, which is necessarily a zero of the
function.

Example 3.14 Prove that the equation

2x5 − 18x4 + 3x3 + 20x− 13 = 0

has at least one real solution. The expression on the left side of the equation
de�nes a continuous function f for which

lim
x→+∞

f(x) = +∞ and lim
x→−∞

f(x) = −∞ .

Therefore f is positive for su�ciently large values of x and takes negative values
if x is small enough. Therefore, by the Bolzano-theorem the equation has at least
one real solution.
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The following property of continuous functions is of fundamental importance
for extremum problems and optimization.

Theorem 3.15 (Weierstrass) Let f be a continuous function on the �nite
interval [a, b]. Then f takes its maximum and minimum on this interval.

We do not prove this theorem, but note that the function has to be bounded,
and there exists a lowest upper bound. It can be shown that the lowest upper
bound is the maximum of the function. A similar argument applies for the
minimum.

For example, the function

f(x) =

{
x if 0 ≤ x ≤ 1
3− x if 1 < x ≤ 2

does not reach its maximum value on the interval [0, 2], but as we see, it is not
continuous at 1.

Study at home:

• Textbook-1, read Sections 6.1, 6.2, 6.7, 7.1 and 7.2.

• Textbook-1, Exercises on pages 171�172, 177�178, 198, 202 and 205.

• Thourough study of "Mathematical Analysis Exercises" on my web site.



Chapter 4

Di�erentiation of functions

4.1 The derivative

Let f be a real function de�ned on an interval, and suppose that x0 is an interior
point of the interval.

De�nition 4.1 We say that f is di�erentiable at x0 if the following limit
exists and it is �nite:

lim
h→0

f(x0 + h)− f(x0)

h

This limit is called the derivative of f at the point x0, its notation is f ′(x0).
We say that the function f is di�erentiable in an interval, if it is di�erentiable
at every interior point of the interval.

The quotient above is called the di�erence quotient of f at the point x0.

Example 4.2 Consider the function f(x) = x2 on the real line. The di�erence
quotient at x0 is:

f(x0 + h)− f(x0)

h
=

(x0 + h)2 − x20
h

= 2x0 + h

whose limit is 2x0, if h→ 0. Consequently

f ′(x0) = 2x0 .

In a very similar way we can show that in the case of f(x) = xn (where n is an
integer),

f ′(x0) = nxn−10 .

In fact, use the identity

(x0 + h)n − xn0 = h((x0 + h)n−1 + (x0 + h)n−2 · x0 + . . .+ xn−10 )

33
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Theorem 4.3 If f di�erentiable at x, then it is continuous at x.

Proof. Let hn → 0, hn 6= 0 be a sequence, then by the di�erentiability

lim
n→∞

f(x+ hn)− f(x)

hn
= f ′(x) ,

which is �nite. This is only possible if limn→∞(f(x + hn) − f(x)) = 0, that is
limn→∞ f(x+ hn) = f(x). This exactly means that f is continuous at x. �

ATTENTION! The converse statement is not true in general, as it is demon-
strated by the following example

Example 4.4 Consider the function f(x) = |x| on the real line, and examine
its di�erence quotient at x0 = 0. It is clear that

f(h)− f(0)

h
=
|h|
h

=

{
1 if h > 0
−1 if h < 0

and therefore, the limit does not exist when h → 0, since the right-hand limit
is +1, while the left-hand limit is −1. Thus the function f is not di�erentiable
at x = 0

However, f is di�erentiable at any other point, in particular f ′(x) = 1, if
x > 0, and f ′(x) = −1, if x < 0.

4.2 Tangent lines

Geometric interpretation (see Figures.pdf) shows that f ′(x0) is the slope of the
tangent line to the graph of f at x0.

By using this observation, we can give the equation of the tangent line to
the graph of f that passes through the point P (x0, f(x0)):

y = f ′(x0)(x− x0) + f(x0) .

For instance, the equation of the tangent line to the graph of f(x) = x3 at
x0 = 1 is

y = 3(x− 1) + 1

Example 4.5 Find the equation of the tangent line to the graph of f(x) = sinx
at x0 = 0. On the one hand, the tangent line passes through the origin, on the
other hand, the slope is:

f ′(0) = lim
h→0

f(h)− f(0)

h
= lim
h→0

sinh

h
= 1 .

Therefore, the equation is y = x that intersects the graph at the origin.
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4.3 Rules of di�erentiation

Consider the functions f and g, and assume that both are di�erentiable at x.
The rules below follow from the basic properties of limits.

Derivative of a sum If α and β real numbers, then αf(x) + βg(x) is di�er-
entiable at x and

(αf(x) + βg(x))′ = αf ′(x) + βg′(x) ,

Derivative of a product f(x) · g(x) is di�erentiable at x and

(f(x) · g(x))′ = f ′(x) · g(x) + f(x) · g′(x) ,

Derivative of a quotient if g(x) 6= 0, then f(x)/g(x) is di�erentiable at x,
and (

f(x)

g(x)

)′
=
f ′(x)g(x)− f(x)g′(x)

g(x)2
.

As an example let us see how we can prove the di�erentiability of the product:

f(x+ h) · g(x+ h)− f(x) · g(x)

h
=

f(x+ h) · g(x+ h)− f(x+ h) · g(x)

h
+

f(x+ h) · g(x)− f(x) · g(x)

h
=

f(x+ h)
g(x+ h)− g(x)

h
+ g(x)

f(x+ h)− f(x)

h

Here the limit of the �rst factor is f(x)g′(x) based on the continuity of f , while
the limit of the second factor is f ′(x)g(x), if h→ 0. That completes the proof.
The proofs of the other rules can be carried out in a very similar way.

Example 4.6 The tangent line to the graph of f(x) = 1/x taken at any point
encloses a triangle with the coordinate axes. (See Figures.pdf.) Show that the
area of this traingle is the same, no matter at what point the tangent line is
taken.

Because of the symmetry, it is enough to focus to points x0 > 0. By the
Quotient-rule

f ′(x0) = − 1

x20
hence, the equation of the tangent line taken at x0 is:

y = − 1

x20
(x− x0) +

1

x0

The intersection points with the coordinate axes are:
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if x = 0, then the intersection point on the y-axis is b = 2/x0

and similarly

if y = 0, then the intersection point on the x-axis is a = 2x0.

Thus, the are of the enclosed right triangle is

A =
1

2
ab =

1

2
· 2x0 ·

2

x0
= 2

which is independents of the choice of x0.

4.4 Composition of functions

Let f and g be both R→ R functions so that the range of g lies inside (subset)
the domain of f . Then the function

x→ f(g(x))

is called the composition of f and g. For this function we use the notetation
Jelölése f ◦ g, that is:

f ◦ g(x) = f(g(x)) .

For instance if f(x) =
√
x and g(x) = 1 + x2, then

f ◦ g(x) =
√

1 + x2 .

Attention, the order is important!

In general f ◦ g 6= g ◦ f . If we consider the example above, then

g ◦ f(x) = 1 + x

but this function is de�ned only for x ≥ 0!

It may even turn out that f ◦ g is de�ned on the nonnegative half line, but
g ◦ f is not de�ned anywhere. For instance, if

f(x) = −1− x4 and g(x) =
√
x ,

then f ◦ g(x) = −1 − x2, if x ≥ 0, but g ◦ f(x) =
√
−1− x4 is not de�ned for

any real number.
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4.5 Chain-Rule

Our theorem on the di�erentiability of composition functions is a very powerful
tool for calculating the derivatives of more complicated functions.

Theorem 4.7 (Chain-Rule) Suppose that g is di�erentiable at x, and f is
di�erentiable at g(x), then f ◦ g is di�erentiable at x, and its derivative is given
by

(f ◦ g)′(x) = f ′(g(x)) · g′(x)

If we introduce the notation k = g(x+h)−g(x), then the di�erence quotient
of the composition function f ◦ g at x can be written like:

f(g(x+ h))− f(g(x))

h
=

f(g(x) + k)− f(g(x))

k
· g(x+ h)− g(x)

h

provided g(x+h)−g(x) 6= 0. In the case of h→ 0, in view of the continuity of g,
we have k → 0, and consequently, the limit of the expression on the right-hand
is:

f ′(g(x)) · g′(x)

Unfortunately, this idea does not work when k = 0. In that case the proof is
somewhat more complicated, we do not go into the details of that situation.

Example 4.8 For example, consider the function

F (x) = (1 + 3x− x2)6 .

We can �nd the derivative without expanding the 6-th power, if we notice that
with the notations f(x) = x6 and g(x) = 1 + 3x − x2 we can write F = f ◦ g.
Therefore, by the Chain-Rule:

F ′(x) = 6(1 + 3x− x2)5 · (3− 2x) .

Example 4.9 Now �nd the derivative of

F (x) =

(
2x+ 3

5 + x2

)3

x ∈ R
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Then by using the notations

g(x) =
2x+ 3

5 + x2
and f(x) = x3

we get F = f ◦ g. Keep in mind that g is a quotient (use the Qutient-rule!), so
we obtain

F ′(x) = f ′(g(x)) · g′(x) = 3

(
2x+ 3

5 + x2

)2

· 2(5 + x2)− 2x(2x+ 3)

(5 + x2)2

that form can still be further simpli�ed if we wish.

Study at home:

1. Review the "Mathematical Analysis Exercises"

2. Review the Exercises below

3. Textbook-1, Chapter 4, Sections 5.2 and 5.6.



Chapter 5

The Mean Value Theorem

5.1 The inverse function

Consider a function f : R → R that is one-to-one on a given interval. In the
case of a continuous function this means that it is either strictly monotone
decreasing or strictly monotone increasing (in view of Bolzano's theorem, see
Theorem 3.13).

De�nition 5.1 The inverse of f is the function f−1 whose domain is the
range of f , its range is the domain of f , and further

f−1 ◦ f(x) = x

at every point in the domain of f .

This �reverse� correspondence can be obtained by taking the equality

y = f(x)

and isolate x as the function of y:

x = f−1(y) .

For instance, if f(x) = (2x+ 5)3, then we get

f−1(y) =
3
√
y − 5

2
.

Geometrically this means that the graphs of f−1 and of f are symmetric
with respect to the staight line y = x (that bisects the right angle at the origin).

39
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5.2 Di�erentiability of the inverse function

Theorem 5.2 Assume that f is continuous and strictly monotone on a given
interval, and it is di�erentiable at an interior pont x. Also suppose that f ′(x) 6=
0. Then f−1 is di�erentiable at y = f(x), and

(f−1)′(y) =
1

f ′(x)
.

Roughly, the situation is the following. Consider the di�erence quotient:

f−1(y + h)− f−1(y)

h

Let x and x + k be points in the domain of f such that y = f(x) and y + h =
f(x+ k). Then the di�erence quotient can be written in the following form:

x+ k − x
f(x+ k)− f(x)

=
1

f(x+k)−f(x)
k

If here h → 0, then k → 0 (ATTENTION, this is not trivial! It means the
continuity of f−1.), and hence, the limit of the fraction on the right-hand side
is really 1/f ′(x).

Example 5.3 Find the derivative of the function

g(x) = n
√
x

at a point x > 0. As we see, g is the inverse of the power function f(x) = xn

on the non-negative half line, that is g(y) = f−1(y). Thus,

g′(y) =
1

f ′(x)
=

1

nxn−1
=

1

n
· y 1

n−1

since y = xn and consequently

xn−1 = y
n−1
n

In view of this example we conclude that for every rational exponent r the
function F (x) = xr is di�erentiable at every point x > 0, and its derivative is:

F ′(x) = rxr−1 .
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Example 5.4 Calculate the derivative of the function

F (x) =
√

1 + x4

Set f(x) =
√
x and g(x) = 1 + x4, with these notations we have F = f ◦ g.

Making use of the Chain-Rule we get

F ′(x) = f ′(g(x)) · g′(x) =
4x3

2
√

1 + x4

5.3 The exponential and logarithm functions

Consider the exponential function with base e on the real line, and its inverse,
which is the logarithm function with base e (that is denoted by the symbol ln):

f(x) = ex f−1(x) = lnx (x > 0) .

They are called the natural exponential function, and the natural logarithm
function, respectively. Below we �nd their derivatives. We start with the equal-
ity

lim
x→±∞

(
1 +

1

x

)x
= e .

Find the derivative of the natural logarithm function at x0 = 1.

ln(1 + h)− ln 1

h
= ln(1 + h)1/h

whose common right-hand limit and left-hand limit at zero is ln e. (Here we
supposed the continuity of the logarithm function.) Therefore, the derivative is
1.

The derivative of f(x) = ex at the point 0 can be determined by exploiting
our theorem about the di�erentiability of the inverse function:

f ′(0) = lim
h→0

eh − 1

h
=

1

(ln)′(1)
= 1 .

This enables us to get the derivative of the exponential function at an arbitrary
point x:

f ′(x) = lim
h→0

ex+h − ex

h
= ex · lim

h→0

eh − 1

h
= ex

Using the di�erentiability of the inverse again, we obtain the derivative of the
logarithm function at any given point x > 0:

(f−1)′(x) =
1

eln x
=

1

x
.
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Example 5.5 As a straightforward application, �nd the derivative of the
function

f(x) = xα

at any given point x > 0, where α is an arbitrary real exponent. First we write:

f(x) = xα = eα ln x

Then, in view of the Chain-Rule we get

f ′(x) = α
1

x
eα ln x = α

1

x
xα = αxα−1

This tells us that the di�erentiation can be carried out the same way as in the
case of rational exponents.

5.4 Necessary condition for an extremum

Consider a function f : R→ R.

De�nition 5.6 We say that a point x0 in the domain of f is a (global)
minimum point, if f(x0) ≤ f(x) for every point x 6= x0 in the domain of f .

We say that a point x0 in the domain of f is a local minimum point, if there
exists a positive number ε > 0 such that f(x0) ≤ f(x) at every point in the
domain x with 0 < |x− x0| < ε.

In both cases we strict minimum points if strict inequalities apply.

We can formulate analogous de�nitions for maximum points.

It is obvious that a global minimum point is also a local minimum point.
The converse statement however, is not true in general, as it is shown in the
following example. For instance, the function

f(x) =

{
(x+ 1)2 ha x < 0
(x− 1)2 ha x ≥ 0

admits a local maximum at x = 0 (here the function is continuous, but not
di�erentiable, check it!) but this function does not have a global maximum,
since it is not bounded from above.

For di�erentiable functions we can present the following charcterization of
local extreme (minimum or maximum) points.

Theorem 5.7 Let us suppose that f is de�ned on an interval, at it is dif-
ferentiable at an interior point x0. If x0 is a local minimum point of f , then
f ′(x0) = 0.
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Proof. Indeed, consider the di�erence quotient:

f(x0 + h)− f(x0)

h
.

If h > 0, then the di�erence quotient for small values of h is non-negative,
and consequently, the right-hand limit is non-negative. On the other hand, if
h < 0, then similarly, the left-hand limit is non-positive. By the di�erentiability
assumption the di�erence quotient has a limit when h→ 0, which therefore, can
only be zero. Thus f ′(x0) = 0.

This theorem formulates only a necessary condition for minimum, which is
not su�cient! For example, the function f(x) = x3 has no extereme point at
x = 0, but f ′(0) = 0.

In the case of a di�erentiable function, those points x0 where f ′(x0) = 0, are
called critical (or sometimes stationary) points. Using this vocabulary, we may
say that the extreme points of a function are critical, the converese statement
is not necessarily true.

5.5 Lagrange's Mean Value Theorem

Based on the geometric interpretation, the Mean Value Theorem formulates a
very illustrative statement.

Theorem 5.8 Let f be continuous on the �nite closed interval [a, b], and
di�erentiable in the interior of the interval. Then there exists a point ξ ∈ (a, b)
so that

f ′(ξ) =
f(b)− f(a)

b− a

Proof. Introduce the function

g(x) = f(x)− f(a)− f(b)− f(a)

b− a
(x− a)

According to the assumptions, this function is continuous on the interval [a, b],
hence, by Weierstrass' Theorem (see Theorem 3.15) it achieves its minimum
and maximum in [a, b] intervallumon. At least one of the extreme points (either
the minimum, or the maximum) is in the interior of the interval, because

g(a) = g(b) = 0 .

If this interior extreme point is ξ ∈ (a, b), then by our previous theorem g′(ξ) =
0. This exactly means that

f ′(ξ)− f(b)− f(a)

b− a
= 0 .

Please observe, that the continuity assumption in our theorem is vital!
Sketch a �gure to show that!
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5.6 L'Hôpital's Rule

The procedure below makes it possible to compute complicated limits relatively
easily.

Let both f and g be di�erentiable, and their derivatives f ′ and g′ are con-
tinuous in a neighborhood of a point x0, and suppose that f(x0) = g(x0) = 0.
We want to �nd the limit

lim
x→x0

f(x)

g(x)

which is of the form 0/0 so �unde�ned�.

By the Mean Value Theorem

f(x)

g(x)
=

f(x)−f(x0)
x−x0

g(x)−g(x0)
x−x0

=
f ′(ξ)

g′(η)

where ξ and η are points between x and x0. Now if x→ x0, then both ξ → x0
and η → x0. Therefore, by the continuity of the derivative functions we get

lim
x→x0

f(x)

g(x)
= lim
x→x0

f ′(x)

g′(x)

This equality is called L'Hôpital's Rule. If the resulting limit still has the form
0/0, then apply L'Hôpital's Rule again until a "decent" limit is received.

Example 5.9 Find the following limit by using L'Hôpital's Rule:

lim
x→0

2 sinx

1−
√

1 + x

Taking the limits of the derivatives, we have:

lim
x→0

2 sinx

1−
√

1 + x
=

2 cos 0

− 1
2
√
1+0

= −4

Study at home:

1. Review of the exercises in "Mathematical Analysis Exercises"

2. Textbook-1, Sections 5.1, 5.4, 7.5 and 7.6, Chapter 8.



Chapter 6

Complete analysis of

functions

6.1 Monotone functions

De�nition 6.1 We say that f is monotone increasing on an interval, if for any
two points of the interval with x1 < x2 we have f(x1) ≤ f(x2). An analogous
de�niton applies for monotone decreasing functions.

We say that the function is strictly monotone (in either case), if we have
strict inequalities in the de�nition.

Theorem 6.2 Let f be continuous on a �nite closed interval [a, b], and dif-
ferentiable in its interior. If we have f ′(x) > 0 at every interior point of the
interval, then f is strictly monotone increasing on [a, b].

Indeed, if x1 < x2 are two arbitrary points of the interval [a, b], then by the
Lagrange's Mean Value Theorem there exists a point x1 < ξ < x2, such that

f(x2)− f(x1) = f ′(ξ)(x2 − x1) .

By our assumption the right-hand side is positive, therefore

f(x2)− f(x1) > 0

that means f is strictly monotone increasing on the interval.

Now, let us examine a function that is monotone increasing and di�erentiable
in an interval. For any two di�erent points x and x+ h in the interval we have:

f(x+ h)− f(x)

h
≥ 0

45
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regardless of h > 0 or h < 0. Passing to the limit h → 0 we obtain f ′(x) ≥ 0.
Thus, we can formulate the following theorem.

Theorem 6.3 Let f be continuous on the interval [a, b], and di�erentiable
in its interior. Then f is monotone increasing on the interval if and only if
f ′(x) ≥ 0 at each interior point of the interval.

A completely similar statement can be formulated for monotone decreasing
functions.

However, the assertion that if f is strictly monotone increasing, then we
would have f ′(x) > 0 for every interior point x is NOT TRUE. For example,
the function f(x) = x3 is strictly monotone increasing on the entire real line,
but f ′(0) = 0.

6.2 Finding extreme points

Consider a function f : R → R and pick an interior point x0 in the domain.
Suppose that f is di�erentiable at x0.

As we have seen, the necessary condition for x0 for being an extreme point
is f ′(x0) = 0. The question is, how we can formulate a su�cient condition
for really having an extremum at x0. It is easy to see that if there exists
a positive number ε > 0 so that f is monotone decreasing on the interval
[x0− ε, x0], moreover f is monotone increasing on the interval [x0, x0 + ε], then
x0 is de�nitely a local minimum point of f .

For di�erentiable functions we can summarize this observation in the follow-
ing theorem.

Theorem 6.4 Assume that f is di�erentiable in an interval, and x0 is an
interior point of the interval. If there exists a positive number ε > 0, so that

• f ′(x) ≤ 0 , if x ∈ (x0 − ε, x0)

• f ′(x) ≥ 0 , if x ∈ (x0, x0 + ε)

then x0 is a local minimum point of f .

Obviously, an analogous statement can be formulated for the case of local
maximum as well.

Example 6.5 Find the extreme points and the intervals of monotonicity of
the function

f(x) = x2e−x
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By the Product-Rule, the derivative is:

f ′(x) = (2x− x2)e−x

whose sign depends exclusively on the �rst factor (the second is positive). Con-
sequently:

• If x ∈ (−∞, 0), then f ′(x) < 0, so f is monotone decreasing.

• If x = 0, then f ′(0) = 0, this is a critical point.

• If x ∈ (0, 2), then f ′(x) > 0, so f is monotone increasing.

• If x = 2, then f ′(2) = 0, this is another critical point.

• If x ∈ (2,+∞), then f ′(x) < 0, so f is monotone decreasing.

By the changing the signs of f ′ we can conclude that x = 0 is a minimum point
(global), while x = 2 is a local maximum point.

Example 6.6 Consider the following function on the real line:

f(x) = x+ sinx

Since f ′(x) = 1 + cosx, it is clear that function has critical points at

x = (2k + 1)π k = 0,±1,±2, . . .

However, none of them is an extremum:

x 6= (2k + 1)π then f ′(x) > 0 ,

because cosx > −1. This means that the derivative does not change its sign.
In fact, this function is strictly monotone increasing on the entire real line.

6.3 Higher order derivatives

If a function f is di�erentiable in a given interval, then the correspondence
x→ f ′(x) is called the derivative function of f . If f ′ is again di�erentiable at a
given point x0, then we say that f is twice di�erentiable at this point. Instead
of using the complicated notation (f ′)′(x0), we use the brief formula

f ′′(x0)

and this is called the second derivative of f at x0.
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In a completely similar way, if n is a given integer, we can de�ne the n-the
derivative of the function f at x0, and its notation is

f (n)(x0) .

For instance, for the function f(x) = 1/x at any given point x0 6= 0 we have

f ′′(x0) =
2

x30
and f (n)(x0) =

(−1)nn!

xn+1

for every integer n.

Example 6.7 Consider the function f(x) = sinx, and �nd its derivative
function.

f ′(x) = lim
h→0

sin(x+ h)− sinx

h
= lim
h→0

sinx cosh+ cosx sinh− sinx

h

= sinx · lim
h→0

cosh− 1

h
+ cosx · lim

h→0

sinh

h

In view of Example 3.12 the �rst limit is 0, and in view of Example 3.8 the
second limit is 1. Therefore,

f ′(x) = cosx

By using the identity cosx = sin(x+ π/2) and the Chain-Rule, we have

(cosx)′ = cos(x+ π/2) = − sinx

Therefore, the higher order derivatives of f(x) = sinx can be given in terms of
the divisibility by 4:

f (n)(x) =


cosx if n = 4k + 1
− sinx if n = 4k + 2
− cosx if n = 4k + 3

sinx if n is divisible by 4

6.4 Second order conditions

It may happen that we analyze a function, where the sign of its derivative is
not easy to determine (for instance a higher degree polynomial). In a case like
that, the second order (su�cient) condition proves to be useful.

Theorem 6.8 Let f be di�erentiable in an interval, and suppose that f is
twice di�erentiable at an interior point x0.

If f ′(x0) = 0 and f ′′(x0) > 0, then x0 is a local minimum point of f .
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Proof. Indeed, by examining the di�erent quotient we get

f ′′(x0) = lim
h→0

f ′(x0 + h)− f ′(x0)

h
=

= lim
h→0

f ′(x0 + h)

h
> 0

This means that the quotient f ′(x0 + h)/h is positive for 0 < |h| < ε for some
ε > 0. This implies that

• if x ∈ (x0 − ε, x0), then f ′(x) < 0,

• if x ∈ (x0, x0 + ε), then f ′(x) > 0.

Making use of Theorem 6.4 we conclude that x0 is really a local minimum point.

We can formulate an analogous second order su�cient condition for the case
of local naximum.

By using proof by contradiction, we get the second order necessary condition
for an extremum point.

Theorem 6.9 Assume that f is twice di�erentiable in an interval, and let x0
be an interior point of the interval.

• If x0 is a local minimum point, then f ′(x0) = 0, and f ′′(x0) ≥ 0.

• If x0 is a local maximum point, then f ′(x0) = 0, and f ′′(x0) ≤ 0.

Example 6.10 For x > 0 consider the function

f(x) = x lnx

Then f ′(x) = 1 + lnx, therefore, the only critical point of f is x = 1/e. On the
other hand f ′′(x) = 1/x, so we have

f ′′(1/e) = e > 0 ,

Thus, x = 1/e is a local minimum point of f . (It is not hard to verify that this
is a global minimum point as well.)

Please observe that our theorems provide no information for a critical point
x0 with

f ′′(x0) = 0 .

The reason that in this �marginal� situation anything can happen. For example,
examine the behavior of the functions

f(x) = xn (n ≥ 3)

at the critical point x0 = 0. On the one hand, here f ′(0) = 0 and f ′′(0) = 0.
On the other hand
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• if n is even, then x0 = 0 is (global) minimum point,

• if n is odd, then x0 = 0 is not an extremum point (so-called saddle point).

Very similarly, if n is even, then x0 = 0 is a (global) maximum point of −f .

6.5 Convex and concave functions

De�nition 6.11 The function f is said to be convex on the interval [a, b], if for
any two points x1 and x2 from the interval, and for any real number 0 ≤ α ≤ 1

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2) .

The geometric meaning of this de�nition is that any cord to the graph (i.e.
a segment that connects two points on the graph) can nowhere be below the
graph of the function.

Concave functions are de�ned by the opposite inequality.

We now give a simple characterization of convexity for twice di�erentiable
functions.

Theorem 6.12 Assume that f is continuous on a closed interval, and twice
di�erentiable in the interior. The necessary and su�cient condition for the
convexity of f is:

f ′′(x) ≥ 0

at every interior point of the interval.

In particular, this means that for convex functions the slope of the tangent
line (i.e. the derivative) is monotone increasing. Geometrically this can be
illustrated by the fact that the graph of the function is nowhere below the
tangent line.

Example 6.13 Give a complete analysis of the function

f(x) =
x

1 + x2

First we calculate the derivative:

f ′(x) =
1− x2

(1 + x2)2
.

By examining the sign of the derivative, we come up with the following summary:
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• f is strictly monotone decreasing on the interval (−∞,−1)

• x = −1 is a (global) minimum point

• f is strictly monotone increasing on the interval (−1, 1)

• x = 1 is a (global) maximum point

• f is strictly monotone decreasing on the interval (1,+∞).

The convexity is investigated by specifying the sign of the second derivative:

f ′′(x) =
2x3 − 6x

(1 + x2)3

Obviously, the denominator is positive, so it is enough to �nd the sign of the
numerator:

2x3 − 6x = 2x(x2 − 3)

By examining the factors we come up with the following summary:

• f is concave on the interval (−∞,−
√

3)

• f is convex on the interval (−
√

3, 0)

• f is concave on the interval (0,
√

3)

• f is convex on the interval (
√

3,+∞).

Please notice that we have f ′′(−
√

3) = f ′′(0) = f ′′(
√

3) = 0, and the second
derivative changes the sign at those points. In other words those points separate
the convex and concave segments of the function. Such point are called the
points of in�ection of f . At a point of in�ection the tangent line intersects the
graph of the function.

Probably the most important property of convex function is that every local
minimum point is a global minimum point as well.

Theorem 6.14 Consider a twice di�erentiable convex function f on an in-
terval, and let x0 be an interior point of the interval. If x0 is a local minimum
point, then it is a global minimum point.

Proof. Indeed, on the one hand f ′(x0) = 0, on the other hand f ′ is monotone
increasing. Therefore, at every interior point x0:

• if x < x0, then f ′(x) ≤ 0, and hence, f(x) ≥ f(x0),

• if x > x0, then f ′(x) ≥ 0, and hence, f(x) ≥ f(x0).
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This proves our statement.

A completely analogous theorem can be formulated for concave functions
and maximum points.

Example 6.15 De�ne the function f for x > 0 on the positive half line:

f(x) = ax+ 2 lnx

where a is an unspeci�ed parameter. For what value of a will f possess a global
maximum point at x = 6?

By the necessary condition for an extremum

f ′(x) = a+
2

x
= 0

that yields x = −2/a. By the condition x = 6, we get a = −1/3. The second
derivative of f is:

f ′′(x) = − 1

x2
< 0 ,

therefore the function is concave on the whole domain. Consequently, for the
parameter a = −1/3 the function f has a global maximum point at x = 6.

Study at home:

1. Careful review of the "Mathematical Analysis Exercises"

2. Textbook-1: Chapter 9.



Chapter 7

Integration

7.1 The inde�nite integral

De�nition 7.1 Let f be a function de�ned on an interval I. A di�erentiable
function F de�ned on I is called the inde�nite integral of f , or sometimes its
primitive function, if

F ′(x) = f(x)

for every x ∈ I.

It is clear that taking the inde�nite integral is the reverse operation of dif-
ferentiation. It is important to note that the inde�nite integral is not unique!
Indeed, if F is the inde�nite integral of a function f , then by adding a constant
C to F we again have an inde�nite integral:

(F (x) + C)′ = F ′(x) = f(x)

for every x ∈ I.
We show that this is the only way to create other inde�nite integrals.

Theorem 7.2 If F is an ide�nite integral of f on the interval I, then any
inde�nite integral of f can be given in the form F +C, where C is a constant.

Proof. Indeed, if the di�erentiable function G is an inde�nite integral of f
on the interval I, then at every point x ∈ I we have

(F (x)−G(x))′ = f(x)− f(x) = 0

This means that the derivative of F − G is zero on I. By the Mean Value
Theorem we get that F −G is constant on the interval.
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In view of our theorem, we use the following notation for inde�nite integrals:∫
f(x) dx = F (x) + C

For instance, by simple di�erentiation we can verify∫
cosx dx = sinx+ C

or very similarly ∫
xα dx =

xα+1

α+ 1
+ C (α 6= −1)

where C is an arbitrary constant. If a function has an inde�nite integral on an
interval, then there are in�nitely many of them.

7.2 Basic integrals

The following rule can be useful for �nding inde�nite integrals:

Theorem 7.3
∫

(αf(x) + βg(x)) dx = α
∫
f(x) dx+ β

∫
g(x) dx

This rule can be extended to any sums with �nitely many terms.

ATTENTION: Not all functions have inde�nite integrals. For example, a
function f with a point of discontinuity, where the one-sided limits exist, they
are �nite, but not equal, cannot possess an inde�nite integral. The following
theorem formulates a useful su�cient condition for the existence of the inde�nite
integral.

Theorem 7.4 If f is continuous on the interval I, then it has an inde�ninite
integral.

We can easily create rules for �nding inde�nite integrals by reversing the dif-
ferentiation rules. By taking the opposites of di�erentiation rules for elementary
functions, we obtain rules for �nding inde�nite integrals.

In general, any formula for an inde�nite integral can be veri�ed by direct
di�erentiation. For example:∫

sinx dx = − cosx+ C∫
(2x2 − 5x+ 8) dx =

2

3
x3 − 5

2
x2 + 8x+ C∫

e2x−1 dx =
1

2
e2x−1 + C∫

2x

1 + x2
dx = ln(1 + x2) + C
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7.3 Initial value problems

As we have seen, a function can have in�nitely many inde�nite integrals (if any
exists), and they di�er only in an additive constant. However, if �x a point
in the coordinate system, and looking only for a de�nite integral that passes
through the given point, then the solution of the problem may be unique.

Example 7.5 Find the function F for which

F ′(x) = 2e−x and F (0) = 1

In this case we are looking for a speci�c inde�nite integral

F (x) = 2

∫
e−x dx = −2e−x + C

so that F (0) = 1. The condition implies C = 3, and this is the only solution.

7.4 De�nite integrals

In this section we brie�y outline how Berhard Riemann, professor of mathemat-
ics at University of Göttingen (Germany) introduced the concept of integration
in the 19-th century. The idea is based on the two-sided approximation devel-
oped Archimedes, the ancient greek mathematician. This idea is a fundamental
element of human thinking, and this is how Archimedes determined the area of
the circle in Syracuse, using the areas of approximating polygons from inside
and outside.

Let f be a continuous function on the �nite interval [a, b], and consider the
partition of the interval into n subintervals by using the points

a = x0 < x1 < . . . < xn = b

On every subinterval [xk−1, xk] let mk denote minimum value of f , and let
Mk denote the maximum value of f . Those extreme values exist by virtue of
Weierstrass' theorem (see Theorem 3.15). Create the sum

sn =

n∑
k=1

mk(xk − xk−1)

that we call lower sum, and the sum

Sn =

n∑
k=1

Mk(xk − xk−1)
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that we call upper sum. The sum the areas of these rectangles approximate the
area below the graph of f from below, and from above, respectively. Check
Figures.pdf for details!

We can easily see that by inserting a new node point sn cannot decrease,
and Sn cannot increase. It can be shown that if the density of the partion gets
higher then the lowest upper bound of the lower sums coincides with the highest
lower bound of the upper sums. Following Riemann's idea, this common value
S is called the de�nite integral of f on the interval [a, b]. The notation is:

S =

∫ b

a

f(x) dx

which means the (signed!) area below the graph of f .

ATTENTION!

The area above the x-axis comes with positive sign, the area below the x-axis
comes with negative sign, respectively.

Based on this geometric interpretation, the following properties of the de�-
nite integral are intuitively obvious.

Theorem 7.6 Let f and g be functions that have de�nite integrals on [a, b].
Then

1. if f(x) ≤ g(x) on the interval [a, b], then∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx

2. in particular, |
∫ b
a
f(x) dx| ≤

∫ b
a
|f(x)| dx.

3. If f(x) ≤M on the interval [a, b] (M is a constant), then∫ b

a

f(x) dx ≤M(b− a)

4. If f is continuous on the interval [a, b], then there exists a point x ∈ [a, b],

for which
∫ b
a
f(x) dx = f(x)(b− a).

5. By de�nition:
∫ a
b
f(x) dx = −

∫ b
a
f(x) dx if a ≤ b.

6.
∫ c
a
f(x) dx =

∫ b
a
f(x) dx+

∫ c
b
f(x) dx

Create a picture, and interpret the above statements geometrically!
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7.5 Newton-Leibniz-formula

In this section we show how a de�nite integral can be evaluated by using the
inde�nite integral (primitive function). Our main result is sometimes called the
"Fundamental Theorem of Calculus" (in the English literature).

Theorem 7.7 (Newton-Leibniz-formula) If F is a primitive function of
the continuous function f on the �nite interval [a, b], then∫ b

a

f(x) dx = F (b)− F (a)

Justi�cation (not a proof!): It is easy to see that our statement is indepen-
dent of the choice of the inde�nite integral. Indeed, if G is another primitive
function of f , then

G(x) = F (x) + C

on [a, b] with a constant C (see Theorem 7.2), and therefore,∫ b

a

f(x) dx = [G(x)]ba = G(b)−G(a) = (F (b) +C)− (F (a) +C) = F (b)−F (a) .

On the other hand, �x a point x ∈ [a, b] and consider the integral

F (x) =

∫ x

a

f(t) dt

Then F (a) = 0, since the length of the path of integration is zero. It would be
enough to show that this F is an inde�nite integral of f .

In view of Theorem 7.6 for any a < x < b and h 6= 0 with x + h ∈ [a, b],
there exists a point x between x and x+ h with the following property:

1

h
(F (x+ h)− F (x)) =

1

h

∫ x+h

x

f(t) dt =
1

h
f(x) · h

Now, if we pass to the limit h→ 0, then x→ x, and by the continuity of f we
also have f(x)→ f(x) that is

lim
h→0

1

h
(F (x+ h)− F (x)) = F ′(x) = lim

h→0
f(x) = f(x)

This means that F is really a primitive function of f . �

It was an amazing achievment by Newton and Leibniz, and the mathematics
of their time, to �nd the beautiful relationship between the derivative and the
geometry of de�nite integrals, as it is described in our theorem.
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This discovery is so fundamental that it cannot be overestimated. First, it
triggered a very rapid developement in physics and chemistry, and somewhat
later it gave a massive boost to the evolution of sciences like biology, economics
and others. Summing up, we may say today that the theory of di�erentiation
and integration provides the precise scienti�c language and vocabulary in all
branches of sciences.

For convenience, sometimes we use the following notation:∫ b

a

f(x) dx = [F (x)]
b
a = F (b)− F (a)

As a consequence of the Newton-Leibniz-formula, we can formulate the following
statement.

Consequence 7.8 If f is continuous on an interval, then it has a primitive
function on that interval.

Proof. In view of the proof of the Newton-Leibniz-formula, we get that the
function

F (x) =

∫ x

a

f(t) dt

is really a primitive function of f on the given interval. �

Example 7.9 Evaluate the de�nite integral below.∫ 2

1

(
2x3 + 1 +

1

x2

)
dx =

[
x4

2
+ x− 1

x

]2
1

= 9

Some more examples: ∫ π/2

0

sinx dx = [− cosx]
π/2
0 = 1∫ 1

0

ex dx = [ex]
1
0 = e− 1∫ 4

0

√
x dx =

[
2

3
· x3/2

]4
0

=
16

3

Study at home:

1. Careful review of "Mathematical Analysis Exercises"

2. Textbook-1, Chapter 10.
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Methods of integration

8.1 Integration by parts

If f and g are continuously di�erentiable functions on an interval I, then by the
Product-Rule we have:∫

f ′(x)g(x) dx = f(x)g(x)−
∫
f(x)g′(x) dx

This formula is called integration by parts. For example, consider the integral∫
xe−x dx

then by using the allocation f ′(x) = e−x and g(x) = x (could we do it the other
way?): ∫

xe−x dx = −xe−x +

∫
e−x dx = −xe−x − e−x + C

Example 8.1 Use integration by parts in the integral∫
xn lnx dx

(where n 6= −1). Introduce the notation f ′(x) = xn and g(x) = lnx, then (what
do we get in the opposite way?)∫

xn lnx dx =
xn+1

n+ 1
lnx−

∫
xn

n+ 1
dx =

xn+1

n+ 1
lnx− xn+1

(n+ 1)2
+ C

In particular, for n = 0 we have:∫
lnx dx = x lnx− x+ C = x(lnx− 1) + C

59
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8.2 Integration by parts in de�nite integrals

We can use integration by parts in de�nite integrals in the following way:∫ b

a

f ′(x)g(x) dx = [f(x)g(x)]ba −
∫ b

a

f(x)g′(x) dx

For istance, by setting f ′(x) = sinx and g(x) = x (would the opposite way
successful?): ∫ π

0

x sinx dx = [−x cosx]π0 +

∫ π

0

cosx dx

= π + [sinx]π0 = π

This procedure is faster than �rst computing the inde�nite integral and then
substituting the bounds. Further, it may minimize the chance of miscalculation.

Example 8.2 Sometimes we need to carry out integration by parts more times
in a row. Consider the integral ∫

x2e−λx dx

where λ > 0 is a given parameter. Introduce the notations f ′(x) = e−λx, and
g(x) = x2, then ∫

x2e−λx dx = − 1

λ
x2e−λx +

1

λ

∫
2xe−λx dx

The last integral can be evaluated by a repeated integration by parts.

Attention! We stick to the notations f ′(x) = e−λx and g(x) = x. In the
opposite situation we come to an absolutely useless identity. Give it a try!∫

x2e−λx dx = − 1

λ
x2e−λx − 2

λ2
xe−λx − 2

λ3
e−λx + C

Example 8.3 Find the de�nite integral below:∫ π

0

ex sinx dx

Apply the setting f ′(x) = ex and g(x) = sinx, the by two consecutive integra-
tions by parts: ∫ π

0

ex sinx dx = [ex sinx]π0 −
∫ π

0

ex cosx dx

= −[ex cosx]π0 −
∫ π

0

ex sinx dx



8.3. INTEGRATION BY SUBSTITUTION 61

Isolate the original integral on the laft-hand side:

2

∫ π

0

ex sinx dx = −[ex cosx]π0

which means ∫ π

0

ex sinx dx =
1

2
(eπ + 1)

8.3 Integration by substitution

From the di�entiation of a composition of functions (i.e. the Chain-Rule) we
derive the following identity:∫

f(g(t))g′(t) dt =

∫
f(x) dx

where x = g(t) is a continuously di�erentiable function on an interval. This
formula is called the integration by substitution.

Example 8.4 Calculate the following inde�nite integral:∫
5t3
√

2 + t4 dt

Observe that by introducing the substitution x = g(t) = t4, the integral can be
rewritten in this form:∫

5t3
√

2 + t4 dt =
5

4

∫ √
2 + x dx =

5

4
· 2

3
(2 + x)3/2 + C

By performing the backsubstitution:∫
5t3
√

2 + t4 dt =
5

6
(2 + t4)3/2 + C

Example 8.5 Consider an example, where the converse approach is useful:∫
ex
√

1 + ex dx

Introduce the substitution x = g(t) = ln t, then g′(t) = 1/t, and we obtain:∫
ex
√

1 + ex dx =

∫
t
√

1 + t
1

t
dt =

2

3
(1 + t)3/2 + C

By the backsubstitution t = ex we get:∫
ex
√

1 + ex dx =
2

3
(1 + ex)3/2 + C
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8.4 Substitution in de�nite integrals

When substitution is applied in de�nite integrals, instead of backsubstitution,
it is much more e�cient to change the bounds of the integral according the
substitution: ∫ b

a

f(g(t))g′(t) dt =

∫ g(b)

g(a)

f(x) dx

Example 8.6 In the example below we use the setting x = g(t) = cos t, then
g′(t) = − sin t, and∫ π/2

0

sin 2t

1 + cos2 t
dt =

∫ π/2

0

2 sin t cos t

1 + cos2 t
dt

= −
∫ 0

1

2x

1 + x2
dx =

∫ 1

0

2x

1 + x2
dx

= [ln(1 + x2)]10 = ln 2

Example 8.7 Apply this rule to evaluate the following celebrated integral:∫ 1

0

√
1− x2 dx

Introduce the substitution x = g(t) = sin t, then g′(t) = cos t and (please observe
the change of the bounds of the integral!):∫ 1

0

√
1− x2 dx =

∫ π/2

0

cos2 t dt

=
1

2

∫ π/2

0

(1 + cos 2t) dt =
1

2

[
t+

sin 2t

2

]π/2
0

=
π

4

The geometric interpretation of this example is as follows. We determined the
area of the �rst qudrant of the unit circle with center at the origin!

8.5 Linear di�erential equations

By a di�erential equation we mean an equation in which the unknown function
and its derivative appear. Several problems and models in micro and macroe-
conomics lead to such equations. A typical equation like that is the linear
di�erential equation.
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Let a and b are given real numbers, and we are looking for the unknown
di�erentiable function y for which

y′ = ay + b (8.1)

y(0) = y0

where y0 is an "a priori" given real number.

The equality y(0) = y0 is called the initial condition. We say that the
di�erentiable function y is a solution to the above problem, if for any t ∈ R we
have y′(t) = ay(t) + b, moreover y(0) = y0. The question is, how to �nd the
solution of this problem?

Let us suppose that y is a solution. Multiply both sides of the equation by
the expression e−at, then after rearranging the terms, we get

y′(t)e−at − ay(t)e−at = be−at

for every real number t. valós számra. Observe that on the left-hand side we
have precisely the derivative of the product y(t)e−at. Therefore, by integrating
both sides from 0 to t-ig (and changing the variable of the integration from t to
s) ∫ t

0

(y′(s)e−as − ay(s)e−as) ds =
[
y(s)e−as

]t
0

=

∫ t

0

be−as ds

By plugging in the bounds we receive

y(t)e−at − y(0) =

∫ t

0

be−as ds .

Rearranging and multiplying both sides by the expression eat we can formulate
our result in the following theorem.

Theorem 8.8 (Cauchy-formula) The solution to problem (8.1) is given by

y(t) = eat
(
y0 +

∫ t

0

be−as ds

)
on the entire real line.

Recall that without prescribing the initial condition y(0) = y0 the linear
di�erential equation (8.1) would possess in�nitely many solutions.

Example 8.9 For instance, if we are looking for the solution of the linear
di�erential equation

y′ = 2y + 5

y(0) = 3
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then by the Cauchy-formula we conclude that

y(t) = e2t
(

3 +

∫ t

0

5e−2s ds

)
= e2t

(
3− 5

2

[
e−2s

]t
0

)
=

11

2
e2t − 5

2

for each t ∈ R.
Verify that this is the correct solution, by direct substitution!

Study at home:

1. Careful review of "Mathematical Analysis Exercises"

2. Textbook-1, Sections 11.1 and 11.2.



Chapter 9

Extension of integration

9.1 Improper integrals

Assume that f is continuous on an in�nite interval [a,+∞). Then for every
b ≥ a the integral

∫ b
a
f(x) dx exists.

De�nition 9.1 We say that the improper integral of f exists (or convergent)
on the in�nite interval [a,∞), if the limit limb→∞

∫ b
a
f(x) dx exists and it is

�nite. The value of the improper integral is de�ned by∫ ∞
a

f(x) dx = lim
b→∞

∫ b

a

f(x) dx

If the limit above is not �nite, or does not exist, then we say that the improper
integral does not exist (or not convergent).

We de�ne the improper integral∫ a

−∞
f(x) dx

in a completely analogous way.

Example 9.2 Investigate the improper integral∫ ∞
1

1

x
dx

By the de�nition ∫ b

1

1

x
dx = [lnx]b1 = ln b

65
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Passing to the limit b → ∞ we see that the limit of ln b is not �nite, therefore
this improper integral is not convergent.

However, the improper integral∫ ∞
1

1

x2
dx

does exist, since

lim
b→∞

∫ b

1

1

x2
dx = lim

b→∞

[
− 1

x

]b
1

= 1

and the value of the improper integral is 1.

By applying the same argument, we see that the improper integral∫ ∞
1

1

xα
dx

is convergent if and only if α > 1, and its value is∫ ∞
1

1

xα
dx =

1

α− 1
(9.1)

since the limit at the upper bound is zero.

Example 9.3 Consider the following important example (density function of
the exponential distribution): ∫ ∞

0

λe−λx dx

where λ > 0 is a given constant. Then for any b > 0 we have:∫ b

0

λe−λx dx =
[
−e−λx

]b
0

= 1− e−λb

Consequently ∫ ∞
0

λe−λx dx = lim
b→∞

(1− e−λb) = 1

for any given constant λ > 0.

9.2 Improper integrals on the real line

De�nition 9.4 We say that improper integral of f on the real line exists, if
the integrals ∫ 0

−∞
f(x) dx and

∫ ∞
0

f(x) dx
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are convergent. Then the value of
∫∞
−∞ f(x) dx is given by the sum of the two

integrals.

Example 9.5 For instance, the improper integral∫ ∞
−∞

2x

1 + x2
dx

does not exist, although for any given b > 0 we get∫ b

−b

2x

1 + x2
dx = 0

because the integrand is an odd function. However,∫ b

0

2x

1 + x2
dx = ln(1 + b2)

and its limit is +∞, when b → ∞ and according to the de�nition the integral
is not convergent. The same can be said about the integral on (−∞, 0].

Example 9.6 Evaluate the following improper integral:

I =

∫ ∞
0

xe−cx
2

dx

where c > 0 is a given constant. Here for every b > 0 we obtain∫ b

0

xe−cx
2

dx =

[
− 1

2c
e−cx

2

]b
0

This implies that I = 1/2c. On the other hand, the integrand is an odd function,
thus, ∫ ∞

−∞
xe−cx

2

dx = 0 .

Note that it was important to verify that the integral is convergent!

Example 9.7 (Gauss-integral) The following integral is important in prob-
ability theory:

I =

∫ ∞
−∞

e−x
2

dx

(density function of the normal distribution). The evaluation of this improper
integral needs some sophisticated calculations, we skip the details here. The
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reason why this problem is hard is that the primitive function cannot be given
explicitly.

ATTENTION! That does not mean there is no primitive function! The
integrand is continuous, which implies that the primitive function exists (see
the Chapter 7). The main di�culty is that this primitive function cannot be
expressed in terms of elementary functions.

It can be shown that ∫ ∞
0

e−x
2

dx =

√
π

2

and therefore I =
√
π, since the integrand is an even function.

By applying the substitution x = t
√

2, we also see that

1√
2π

∫ ∞
−∞

e−
x2

2 dx = 1 (9.2)

This equality will play an important role in probability theory.

9.3 Integration by parts in improper integrals

In the upcoming examples we use integration by parts in improper integrals.
For simplicity, instead of passing to the limit b → +∞, we brie�y indicate the
upper bound +∞. (But we should know what it means!)

Example 9.8 Suppose that λ is a positive constant, and evaluate the improper
integral ∫ ∞

0

λxe−λx dx

By setting f ′(x) = λe−λx and g(x) = x (this way we make sure that the
multiplier x will disappear in the second integral), we get∫ ∞

0

λxe−λx dx =
[
−xe−λx

]∞
0
−
∫ ∞
0

−e−λx dx

= −
[
e−λx

λ

]∞
0

=
1

λ
.

Observe that the expression within the brackets is zero! It is a consequence of
L'Hôpital's Rule.

Example 9.9 Suppose again that λ is a positive constant, and now evaluate
the improper integral ∫ ∞

0

λx2e−λx dx



9.4. HARMONIC SERIES REVISITED 69

Applying again the setting f ′(x) = λe−λx and g(x) = x2 (this way we make sure
that the degree of the multiplier x2 decreases), by two consecutive integrations
by parts (with the same setting) we obtain∫ ∞

0

λx2e−λx dx =
[
−x2e−λx

]∞
0
−
∫ ∞
0

−2xe−λx dx

=

[
−2xe−λx

λ

]∞
0

−
∫ ∞
0

−2
e−λx

λ
dx

=

[
−2

e−λx

λ2

]∞
0

=
2

λ2

In this example we needed two integrations by parts in a row to eliminate the
multiplier x2. In view of the L'Hôpital-Rule, the expressions inside the brackets
are zero.

Example 9.10 Use integration by parts to evaluate the improper integral∫ ∞
−∞

x2e−x
2/2 dx

By allocating the roles among the factors in a smart way, we conclude:∫ ∞
−∞

(−x) ·
(
−xe−x

2/2
)
dx =

[
−xe−x

2/2
]∞
−∞

+

∫ ∞
−∞

e−x
2/2 dx =

√
2π

where we relied on formula (9.2). Indeed, making use of L'Hôpital's Rule, we
see that both limits of the expression within the brackets are zero, hence∫ ∞

−∞
x2e−x

2/2 dx =
√

2π . (9.3)

9.4 Harmonic series revisited

As we have seen in Chapter 2, for a given exponent α > 0 the in�nite series

∞∑
k=1

1

kα
(9.4)

is divergent if α ≤ 1, and it is convergent if α ≥ 2. However, we were unable
to �nd the answer when 1 < α < 2. Now we give a complete solution by using
improper integrals. Consider n-th partial sum of the series

Sn =

n∑
k=1

1

kα
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and sketch the graph of the function

f(x) =
1

xα

on the positive part of the real line. Take the values of the functions at the
integers 1, . . . , n, then by examining the graph we can easily see that

Sn < 1 +

∫ n

1

1

xα
dx

since the function f is strictly monotone decreasing.

ATTENTION! Check Figures.pdf for the details!

On the other hand f is positive, and for α > 1 its improper integral on the
interval [1,∞) is convergent, see the equality (9.1). Therefore

Sn < 1 +

∫ n

1

1

xα
dx < 1 +

∫ ∞
1

1

xα
dx = 1 +

1

α− 1
=

α

α− 1
.

We conclude that Sn is bounded from above, and it is clearly strictly monotone
increasing, hence it is convergent. We summarize this result in the following
theorem.

Theorem 9.11 The in�nite series (9.4) is convergent if and only if α > 1,
and in this case

∞∑
k=1

1

kα
<

α

α− 1

Study at home

1. Careful review of "Mathematical Analysis Exercises"

2. Textbook-1, Sections 11.3 and 11.4.



Chapter 10

Power series

10.1 Sum of power series

If −1 < x < 1 is a given real number, then the geometric series

1

1− x
=

∞∑
k=0

xk .

is convergent. It is an interesting question if a given function f can be given in
the form

f(x) =

∞∑
k=0

akx
k (10.1)

with appropriate coe�cients ak. In this case we say that f can be expanded in
a power series.

De�nition 10.1 The series on the right-hand side of the equality (10.1) is
called a power series, the function f on the left-hand side is called the sum of
the power series.

In this chapter we examine two interesting questions.

1. For what values x is the power series convergent, and what is its sum f .

2. Conversely, if a function f is given, how can we �nd the power series whose
sum is precisely f (if possible).

A power series is obviously convergent for x = 0 and its sum is a0. The set
of all values of x for which the power series is convergent is called the set of
convergence.
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10.2 Radius of convergence

The set of convergence of a power series is always an interval that is symmetric
about the origin. This fact is formulated in the following theorem.

Theorem 10.2 (Cauchy-Hadamard-theorem) For the power series (10.1)
there exists a nonnegative number R (maybe R = 0 or in�nity) so that the series
is convergent in the open interval −R < x < R, and it is divergent outside the
closed interval [−R,R].

Proof. We just restrict our attention to the case when the limit

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = r

exists. Introduce the notation:

R =

 1/r if 0 < r < +∞
+∞ if r = 0
0 if r =∞

In view of the Quotient Test the series is convergent, if

lim
k→∞

∣∣∣∣ak+1x
k+1

akxk

∣∣∣∣ < 1

which exactly means that |x| < R.

A completely analogous argument shows that the series is divergent when
|x| > R. �

ATTENTION!

This theorem says nothing about the boundary of the interval! At |x| =
R the series may or may not be convergent. This cannot be decided by our
theorem, further analysis is needed.

De�nition 10.3 The number R above is called the radius of convergence of
the power series.

Example 10.4 Consider the power series

∞∑
k=0

xk

k!

Here we have

lim
k→∞

ak+1

ak
= lim
k→∞

k!

(k + 1)!
= lim
k→∞

1

k + 1
= 0
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and hence R =∞. This means that the power series is convergent on the whole
real line.

Another example is the power series

∞∑
k=1

xk

k

Then we get

lim
k→∞

ak+1

ak
= lim
k→∞

k

k + 1
= 1

and hence R = 1. We conclude that the series is convergent in the open interval
(−1, 1), and it is divergent outside the closed interval [−1, 1].

On the other hand, we see that for x = 1 we obtain the divergent harmonic
series, and further for x = −1 we get a convergent series with alternating signs,
see Example 2.12. Thus, the interval of convergence of this power series is the
interval

[−1, 1)

closed from the left and open from the right. Please observe that on the bound-
ary anything can happen!

10.3 Di�erentiability of power series

Consider a power series whose radius of convergence is R > 0 and its sum
function is f that is

∞∑
k=0

akx
k = f(x)

for every −R < x < R.

Theorem 10.5 The sum f of the power series is di�erentiable, in particular

f ′(x) =

∞∑
k=1

kakx
k−1

in the open interval (−R,R).

We do not prove this theorem (it is technical), just note that it is based on
the so-called "uniform convergence" principle. Some consequences however, can
easily be derived from this statement.

• The derivative of the sum is obtained from di�erentiating the power series
term by term. This is not obvious, since the sum rule (in general) is not
true for in�nitely many terms. FIND COUNTEREXAMPLES!
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• Observe that the radius of convergence of the derivative power series is
still R. VERIFY!

• As we see that f ′ is the sum of a power series in the same interval, by
repeated applications of the theorem, we deduce that f is in�nitely many
times di�erentiable in the open interval (−R,R).

Example 10.6 Consider the geometric series in the open interval −1 < x < 1

∞∑
k=0

xk =
1

1− x

Note that the �rst term is 1, whose derivative is zero. Making use of our theorem

∞∑
k=1

kxk−1 =
1

(1− x)2

for every −1 < x < 1.

Example 10.7 Find the function f that is given by the following power series:

f(x) =

∞∑
k=1

(−1)k−1
xk

k

A simple calculation shows that the radius of convergence is R = 1. On the one
hand f(0) = 0, on the other hand, by the di�erentiability of the power series

f ′(x) =

∞∑
k=1

k
(−x)k−1

k
=

∞∑
k=1

(−x)k−1 =
1

1 + x

for each −1 < x < 1. This implies

f(x) = f(0) +

∫ x

0

1

1 + t
dt = [ln(1 + t)]

x
0 = ln(1 + x)

in the open interval (−1, 1). Moreover, by Example 2.12 the original series is
convergent at x = 1, which leads to the celebrated identity

1− 1

2
+

1

3
− 1

4
+

1

5
− . . . = ln 2

However, the series is divergent at x = −1.
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10.4 Finding the coe�cients

Suppose that a function f can be given as the sum of a power series in the interval
of convergence. Then necessarily f is in�nitely many times di�erentiable in the
interval. How could we determine the coe�cients of the power series?

By succesively taking the derivatives of both sides of equality (10.1), the
coe�cients ak can be computed step by step. Indeed, observe that

f(0) = a0, f ′(0) = a1, f ′′(0) = 2a2, . . .

and in general, for any given index k we get:

f (k)(0) = k! · ak

If we substitute these expressions for ak in the power series, then we have

f(x) =

∞∑
k=0

f (k)(0)

k!
xk

This form is called the Taylor-series (or Taylor expansion) of f .

10.5 Taylor-series of the exponential function

In this section we consider the exponential function f(x) = ex. If this function
is the sum of a power series, then the coe�cients can only be

ak =
1

k!

for every k. Indeed, any derivative of ex is ex, which takes the value 1 at x = 0.
Therefore, the Taylor-series associated with the function ex is:

∞∑
k=0

xk

k!

and we have seen that this series is convergent on the entire real line.

The reason why we did not write equality is that it is not yet clear at the
moment that the sum of this series is really ex.

To overcome this di�culty, consider the function

f(x) =

∞∑
k=0

xk

k!

on the real line, which is yet to be determined. Clearly f(0) = 1. On the other
hand, in view of the di�erentiability theorem:

f ′(x) =

∞∑
k=1

k
xk−1

k!
=

∞∑
k=1

xk−1

(k − 1)!
= f(x)
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for every −∞ < x < ∞. This is a simple linear di�erential equation for the
unknown f , whose only solution is

f(x) = ex

on the real line. As a consequence, we deduce the celebrated identity

e = 1 +
1

1!
+

1

2!
+ . . .+

1

n!
+ . . .

by substituting x = 1.

Study at home

1. Careful review of "Mathematical Analysis Exercises"

2. Textbook-1, Section 6.5.



Chapter 11

Functions of two variables

11.1 Partial derivatives

Consider a function f : R2 → R of two variables. Fix the coordinate y = b and
examine the function

x→ f(x, b)

of only one variable. Assume that this function is di�erentiable at a point a,
and determine its derivative.

De�nition 11.1 The derivative above is called the partial derivative of the
function f with respect to the variable x at the point (a, b). We denote it by

∂f

∂x
(a, b) = f ′1(a, b)

Sometimes the notation f ′x(a, b) is also used.

Example 11.2 Consider for instance the function f(x, y) = (x + 2y)ex+3y−1

and �nd its partial derivative with respect to x at the point (1, 1).

Then f(x, 1) = (x+ 2)ex+2, whose derivative at any x is

f ′1(x, 1) = ex+2 + (x+ 2)ex+2 = (x+ 3)ex+2

Substituting x = 1 we obtain f ′1(1, 1) = 4e3.

Example 11.3 Principally, we could also calculate the partial derivative of
the function f with respect to the variable x with an arbitrarily selected and
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�xed y, and substitute the values x = a and y = b. This is of course good, but
not always convenient, as shown in the following example. Take

f(x, y) =
√
x2 + y2 + 5 · e−2x+y · cos(y + π/2)

and �nd the partial derivative with respect to x at the point (1, 0). Then the
above way would give you the right answer, but it requires a long calculation
and very time consuming. However, if we follow the de�nition, then we see that

f(x, 0) = 0

for every x, and therefore f ′1(1, 0) = 0.

The correspondence

x→ ∂f

∂x
(x) , x ∈ R

is called the partial derivative function of f with respect to the variable x.

11.2 Tangent planes

Partial derivatives (similarly to the one variable case) can be given a nice geo-
metric interpretation. Consider a function f : R2 → R with two variables. The
graph of this function is a surface in the three dimensional space. Pick a point

P (a, b, f(a, b))

on the surface. If this surface is intersected by the plane y = b passing through
the point P , then we get a curve lying on the surface. The slope of the tangent
line to this curve at P is exactly the partial derivative f ′1(a, b). We can give an
analogous interpretation for the slope of the tangent line that lies in the plane
x = a. The plane spanned by the two tangent lines has the following normal
vector (perpendicular):

v = (f ′1(a, b), f ′2(a, b),−1)

By using the notation c = f(a, b) the equation of this plane is

f ′1(a, b)(x− a) + f ′2(a, b)(y − b)− (z − c) = 0 .

This plane is called the tangent plane to the surface at the point P .

Example 11.4 Find the value of the parameter p if the tangent plane to the
function

f(x, y) = px
√
x2 + y2 + 1− 7

at the point a = 2, b = 2, c = f(2, 2) passes through the point Q(2,−1, 6).
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Simple substitution shows that f(2, 2) = 6p − 7, which means that we are
looking for the equation of the tangent plane at the point P (2, 2, 6p− 7). Cal-
culate the partial derivatives:

∂f

∂x
(2, 2) =

13

3
p and

∂f

∂y
(2, 2) =

4

3
p

Hence, the equation of the tangent plane at P is:

13

3
p(x− 2) +

4

3
p(y − 2)− (z − 6p+ 7) = 0 .

If the tangent plane passes through the point Q, then its coordinates satisfy the
equation of the plane. This gives us the following equation for the unknown
parameter p:

−4p = 13− 6p .

The only solution is p = 13/2.

11.3 Chain Rule

Consider now the functions f : R2 → R and g : R → R2 where for every t ∈ R
we use the notation

g(t) = (g1(t), g2(t))

Suppose that the range of g lies in the domain of f . Then we may examine the
composition

f ◦ g : R→ R

We want to give a condition on the di�erentiability of f ◦ g.

Theorem 11.5 (Chain Rule) If both g1 and g2 are di�erentiable at t, and the
partial derivative functions of f are continuous at g(t), then f ◦g is di�erentiable
at t, and

(f ◦ g)′(t) =
∂f

∂x
(g(t))g′1(t) +

∂f

∂y
(g(t))g′2(t)

Our theorem is very similar to the Chain Rule with one variable (see Chapter
4). Its proof (skipped) would follow the same ideas, but technically a bit more
involved.

Example 11.6 Take for instance f(x, y) = x2 − xy + y2, and

x = g1(t) = cos t y = g2(t) = sin t
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and consider the composition function F (t) = (f ◦ g)(t). Making use of the
Chain Rule

F ′(t) = (f ◦ g)′(t) =
∂f

∂x
(g(t))g′1(t) +

∂f

∂y
(g(t))g′2(t)

= (2 cos t− sin t)(− sin t) + (− cos t+ 2 sin t) cos t = sin2 t− cos2 t

for every t ∈ R.

Example 11.7 Consider the function f : R2 → R and suppose that its partial
derivatives exist and are continuous. Take the vector v = (v1, v2) ∈ R2 in the
plane, and let a point P (a, b) ∈ R2 be given. Then the equation of the straight
line in the direction v and passing through the point P (a, b) is:

g(t) = (a, b) + tv = (a+ tv1, b+ tv2) .

Using these notations we have g′1(t) = v1, g′2(t) = v2. Further, take the compo-
sition function

F (t) = f((a, b) + tv)

then by the Chain Rule, its derivative is given by:

F ′(t) =
∂f

∂x
((a, b) + tv)v1 +

∂f

∂y
((a, b) + tv)v2

In particular for t = 0 we obtain:

F ′(0) =
∂f

∂x
(a, b)v1 +

∂f

∂y
(a, b)v2

11.4 Local extrema

The absolute value (or the distance from the origin) of a vector v = (x, y) in
the two dimensional plane is de�ned by:

‖v‖ = (x2 + y2)1/2

that is called the norm of the vector v.

De�nition 11.8 In the plane R2 the set

B = {v ∈ R2 : ‖v‖ ≤ 1}
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is called the unit disk (with center at the origin and radius equals 1). Conse-
quently, a disk with center at the point (a, b) ∈ R2 and radius r > 0 is given
by

(a, b) + rB = {v ∈ R2 : ‖v − (a, b)‖ ≤ r}

(i.e. the set of points, whose distance from the center is at most r).

Consider a function f : R2 → R. We say that a point P (a, b) in the domain
is a local minimum point of f , if there exists a ε > 0 such that

f(x, y) ≥ f(a, b)

for all points (x, y) in the domain of f , where (x, y) ∈ (a, b) + εB, that is
‖(x, y)− (a, b)‖ ≤ ε.

The local maximum is de�ned analogously. For global minimum or maximum
the inequality must hold on the entire domain of f .

11.5 First order necessary condition

In this section we suppose that partial derivatives of the function f : R2 → R
exist and are continuous.

Theorem 11.9 If the point (a, b) ∈ R2 is a local minimum point of f , then
f ′1(a, b) = 0 and f ′2(a, b) = 0.

Proof. Take a non zero vector v ∈ Rn arbitrarily, and consider the compo-
sition function

F (t) = f((a, b) + tv) .

In vew of our assumption the function F has a local minimum at t = 0. On the
other hand, F is di�erentiable, namely

F ′(t) =
∂f

∂x
((a, b) + tv)v1 +

∂f

∂y
((a, b) + tv)v2

Applying Theorem 5.7 we get F ′(0) = 0 for every vector v, in other words

∂f

∂x
((a, b))v1 +

∂f

∂y
((a, b))v2 = 0

for all real numbers v1 and v2. This is only possible if

∂f

∂x
((a, b)) = 0 and

∂f

∂y
((a, b)) = 0

and this is exactly that we wanted to prove. �

Analogous theorem applies for the case of local maximum.
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This theorem tells us that local extrema can only be at points where both
partial derivatives are zero. In other words, local extrema can be only be found
in the solution set of the system of equations with both partial derivatives being
zero. This is however, just a necessary condition (just like in the one-variable
case), and by no means su�cient! For example, in the case of the function

f(x, y) = x3y2

we have the necessary condition f ′1(x, y) = f ′2(x, y) = 0. A solution to this
system is (x, y) = (0, 0), and at this point

f(0, 0) = 0

But this is neither a minimum nor a maximum. It is easy to see that the
function has both positive and negative values in any disk around the origin
(with whatever positive radius). Thus, the origin cannot be a local extreme
point.

Example 11.10 Consider the function

f(x, y) =
1

x
+

1

y
+
xy

8

on the plane, where x 6= 0 and y 6= 0, and try to �nd its local extreme points.
Find the zeros of the partial derivatives!

∂f

∂x
= − 1

x2
+
y

8
= 0

∂f

∂y
= − 1

y2
+
x

8
= 0

The only solution to the simultaneous equations is

x = 2 and y = 2 ,

therefore f can only have a local extremum (minimum or maximum) at this
point.

A comprehensive method for deciding whether or not a critical point is a
local extremum will be discussed in the Linear Algebra course (third semester,
sophomore year). We note here that P (2, 2) is in fact a local minimum point of
f (see the "Mathematical Analysis Exercises" for more details).

Study at home

1. Careful review of "Mathematical Analysis Exercises"

2. Textbook-1, Sections 15.3, 15.4, 15.6, 16.1 and 16.2.



Chapter 12

Constrained extrema

12.1 Implicit functions

A problem often encountered in microeconomics is the following. If an equation

F (x, y) = 0

is given, can we uniquely express the variable y from the equation as a function
of x? In other words: can we �nd a unique function y = g(x) such that the
identity

F (x, g(x)) = 0

holds at every point x?

Such a function does not necessarily exist. For example, in the case of the
equation

F (x, y) = x2 + y2 − 1 = 0

(equation of the unit circle) the variable y cannot be expressed uniquely as a
function of x. Geometrically this means that the set of points on the plane that
satisfy the equation F (x, y) = 0 cannot be the graph of a function. The reason
for this is that some vertical lines (parallel to the y-axis) intersect this curve
twice.

It may even happen that the variable y cannot be expressed from the equa-
tion by algebraic manipulations. Such an example is the equation

F (x, y) = ex+y − 2 cos y + 1 = 0

It is easy to see that the point (x, y) = (0, 0) satis�es the equation, but the
variable y cannot be isolated on one side.

We also raise the following question. If F is di�erentiable, then can we
express the variable y from the equation as a di�erentiable function of x? This

83
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question is answered by the following theorem.

Theorem 12.1 (Implicit function theorem) Assume that the at the point
(x0, y0) we have

F (x0, y0) = 0

moreover the partial derivatives of F are continuous in a neighborhood of this
point, and

F ′2(x0, y0) 6= 0

Then there exists a unique continuously di�erentiable function g in a neighbor-
hood of the point x0 such that

• g(x0) = y0

• F (x, g(x)) = 0 at every point x

• g′(x) = −F ′1(x, g(x))/F ′2(x, g(x))

We point out that from the continuity of the partial derivatives we get that
F ′2(x, g(x)) 6= 0 in a neighborhood of the point x0.

The geometric interpretation of our theorem is that if the tangent line to the
planar curve with equation F (x, y) = 0 at the point (x0, y0) is not parallel to
the y-axis (i.e. "the curve cannot turn back"), then y can be expressed (locally)
as a di�erentiable function of x.

Example 12.2 Consider the implicit equation

F (x, y) = ex+y + x+ y − 1 = 0

The point (0, 0) satis�es the equation. On the other hand, at this point

F ′2(0, 0) = 2

Hence, F ful�lls the conditions of the Implicit function theorem: there exist a
unique di�erentiable function y = g(x) with

g′(x) = −F ′1(x, g(x))/F ′2(x, g(x))

= − 1

ex+g(x) + 1
· (ex+g(x) + 1) = −1

at every point x. Since g(0) = 0, this implies

g(x) = −x

and this is the only solution.
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Example 12.3 A slightly more complicated example is

F (x, y) = ex+y − 2 cos y + 1 = 0

The point (0, 0) satis�es the equation. On the other hand, at this point

F ′2(0, 0) = 1

and hence, the conditions of the Implicit function theorem are ful�lled. We
conclude that the equation uniquely determines a di�erentiable function g so
that F (x, g(x)) = 0 at every x. However, this function cannot be expressed
explicitly by using algebraic manipulations.

12.2 Constrained minima

Consider the functions f and F that are both R2 → R and suppose that their
partial derivatives are continuous. By a constrained minimum problem we mean
the following problem:

f(x, y) → min (12.1)

F (x, y) = c

where c is a given real constant. In other words, we look for the minimum (or
sometimes maximum) of f on the set

H = {(x, y) ∈ R2 : F (x, y) = c}

This equality is called the constraint.

De�nition 12.4 We say that the point (x0, y0) ∈ H is the solution of the
constrained minimization problem (12.1) if

f(x0, y0) ≤ f(x, y)

for every (x, y) ∈ H esetén. An analogous de�nition applies for maximum
problems.

Example 12.5 The example below illustrates that for constrained minimiza-
tion problems the usual necessary conditions for extrema do not work. Consider
the constrained minimization problem

f(x, y) = x2 + 2y, F (x, y) = x+ y = 0 i.e. c = 0

From the constraint x+y = 0 we get y = −x, and consequently f(x, y) = x2−2x
on the set H. This function achieves its minimum at the point x = 1 and in H
this necessarily means y = −1. Thus, the constrained minimum is at the point

(x0, y0) = (1,−1)
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However, at this point none of the equalities

∂f

∂x
= 0,

∂f

∂y
= 0

is true. Verify this!

This example also exhibits that a constrained extremum problem can be
transformed into a non-constrained extremum problem by expressing the vari-
able y as a function of x from the constraint F (x, y) = c. In more complicated
problems this may not be possible by algebraic manipulations. This is the point
where we need the Implicit function theorem.

12.3 Lagrange multipliers

Consider the constrained minimization problem (12.1). By using the Implicit
function theorem we make sure that the variable y can be expressed from the
constraint F (x, y) = c, and that way we can solve the problem. This procedure
is described below.

De�nition 12.6 The Lagrange-function (or Lagrangian) of the problem (12.1)
is de�ned by

L(x, y, λ) = f(x, y)− λ(F (x, y)− c)

λ is an arbitrary real number.

Theorem 12.7 (Lagrange-method) Let us suppose that (x0, y0) is the so-
lution of the problem (12.1), and assume that the partial derivatives of f and F
are continuous in a neighborhood of this point. If

F ′2(x0, y0) 6= 0 , (12.2)

there exists a unique real number λ such that

∂L
∂x

(x0, y0, λ) = 0 , and
∂L
∂y

(x0, y0, λ) = 0

Proof. In view of (12.2) the conditions of the Implicit function theorem are
ful�lled. Thus, there exists a unique continuously di�erentiable function g with

• g(x0) = y0, and

• F (x, g(x)) = c in a neighborhood of x0, furthermore
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• g′(x0) = −F ′1(x0, y0)/F ′2(x0, y0).

If (x0, y0) is the solution of problem (12.1), then the function x → f(x, g(x))
achieves its minimum at x0, therefore, its derivative at this point is zero. Ap-
plying the Chain Rule, the derivative can be given in this form:

f ′1(x0, y0) + f ′2(x0, y0)g′(x0) = f ′1(x0, y0)− f ′2(x0, y0)

F ′2(x0, y0)
F ′1(x0, y0) = 0 .

Introduce the notation:

λ =
f ′2(x0, y0)

F ′2(x0, y0)
.

Using this notation, the above derivative can be rewritten:

∂L
∂x

(x0, y0, λ) = f ′1(x0, y0)− λF ′1(x0, y0) = 0 .

The second equality of the theorem is trivial by simply substituting λ. Indeed:

∂L
∂y

(x0, y0, λ) = f ′2(x0, y0)− λF ′2(x0, y0) = 0 .�

Our theorem could be formulated analogously for the case of maximum.

12.4 Solving the constrained minimization prob-

lem

The procedure of solving the constrained minimization problem (12.1) is as
follows.

1. Find the Lagrange-function of the problem.

2. Find the partial derivatives with respect to x and y, and make them equal
zero.

3. Take into account that F (x0, y0) = c.

4. Solve the system of three equations for x, y and λ.

The point (x0, y0) obtained that way satis�es the necessary condition for an
extremum. The solution λ is called the Lagrange multiplier associated with the
problem.

Example 12.8 Now solve the constrained minimization problem in Example
12.5 by using the Lagrange-method. The Lagrange-function of the problem is:

L(x, y, λ) = x2 + 2y − λ(x+ y) .
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The system of equations is of the form:

∂L
∂x

(x0, y0, λ) = 2x0 − λ = 0

∂L
∂y

(x0, y0, λ) = 2− λ = 0

∂L
∂λ

(x0, y0, λ) = x0 + y0 = 0

The only solution to this system is λ = 2, x0 = 1 and y0 = −1.

Example 12.9 The following type of problem frequently appears in microe-
conomics. Find the constrained maximum of consumer demand:

xαyβ → max (12.3)

px+ y = m

where α, β, p and m are given positive real numbers. In this problem

f(x, y) = xαyβ and F (x, y) = px+ y ,

Therefore, the Lagrange-function of the problem is:

L(x, y, λ) = xαyβ − λ(px+ y −m) .

The system of equation that comes from the Lagrange-method:

∂L
∂x

(x0, y0, λ) = α · xα−10 yβ0 − λp = 0

∂L
∂y

(x0, y0, λ) = β · xα0 y
β−1
0 − λ = 0

∂L
∂λ

(x0, y0, λ) = px0 + y0 −m = 0 .

This system admits the following single solution:

px0 =
α

α+ β
m and y0 =

β

α+ β
m ,

The Lagrange multiplier λ can be then calculated from the second equation.

Study at home

1. Careful review of "Mathematical Analysis Exercises"

2. Textbook-1, Sections 16.3, 18.1, 18.2, 18.3, 18.4, 18.5 and 18.6.
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Chapter 13

Probability

13.1 Experiments

In the sequel we deal with experiments that have chance outcomes. In other
words, the experiments have outcomes that cannot be predicted.

1. Toss a playing die and check the number that comes out.

2. Toss a pair of dice.

3. Toss a die, then �ip a coin as many times as the number on the die.

4. Keep tossing a die until 6 comes out for the �rst time.

5. Pick a point randomly on the unit disc (with radius 1).

More complicated examples:

• The number of cars that pass an intersection between 10 am and 11 am.

• The number of calls received by a call center between 8 am and 9 am.

• The length of time period between two successive calls

• The price of a stock at the stock exchange at closing time.

• The waiting time at a customer service desk.

13.2 The sample space

De�nition 13.1 Let Ω denote the set of all possible outcomes in an exper-
iment. The set Ω is called the sample space associated with the experiment.

91



92 CHAPTER 13. PROBABILITY

Specify the sample spaces that are associated with the previous experiments.
Then in the same order:

1. Ω = {1, 2, 3, 4, 5, 6}

2. Ω = {(1, 1), (1, 2), (2, 1), (1, 3), . . . , (6, 6)}

3. Ω = {1H, 1T, 2HH, 2HT, 2TH, 2TT, . . .} (Question: how many elements
are in the sample space?)

4. Ω consists of all �nite sequences whose last digit is 6, and all previous
digits are any of the numbers 1,2,3,4,5.

5. Ω = {(x, y) ∈ R2 : x2 + y2 ≤ 1}

13.3 Events

De�nition 13.2 The subsets of the sample space are called events.

Take some examples in the sample spaces above.

1. Let A denote the event that the outcome is even. Then A = {2, 4, 6}.

2. Let A denote the event that the sum of the two numbers is 7. Then
A = {(1, 6), (6, 1), (2, 5), (5, 2), (3, 4), (4, 3)}.

3. Let A denote the event that we have no Tail (all of them are Head). Then
A = {1H, 2HH, 3HHH, 4HHHH, 5HHHHH, 6HHHHHH}.

4. Let A denote the event that we needed at most two tosses. Then A =
{6, 16, 26, 36, 46, 56}.

5. Let A denote the event that the distance of the point from the center is
less than 1/2. Then A = {(x, y) : x2 + y2 < 1/4}.

13.4 Operations with events

We say that the event A ⊂ Ω occurs, if the experiment results in an outcome
ω ∈ Ω such that ω ∈ A.

The impossible event has no elements, notation: ∅ (empty set). The certain
event is: Ω (the whole sample space).

1. A ∩ B occurs if and only if both A and B occur. We say that A and B
are mutually exclusive, if A ∩B = ∅.
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2. A ∪B occurs if and only if either A or B occurs (or both).

3. A (the complement of A) occurs if and only if A does not occur.

We say that A implies B (or B is a consequence of A), if A ⊂ B.

Theorem 13.3 (De Morgan Rules)

1. A ∪B = A ∩B

2. A ∩B = A ∪B

These identities hold true for an arbitrary number of events as well.

Proof. We demonstrate the �rst identity. Let x ∈ A ∪B be selected arbi-
trarily. Then

x ∈ A ∪B ⇒ x 6∈ A ∪B ⇒ x 6∈ A and x 6∈ B ⇒ x ∈ A and x ∈ B ⇒ x ∈ A ∩B

This proves that A ∪B ⊂ A ∩B. The opposite direction (and hence the equal-
ity) follows from the fact that each implication can be reversed (i.e. they are
equivalences). The second identity can be veri�ed in a completely analogous
way. �

When we carry out an experiment, some possible outcomes may not be
observable. For instance, if we toss a pair of completely identical (indistinguish-
able) dice, we cannot decide whether the outcome is (1, 2) or (2, 1). We can
only claim that the event {(1, 2), (2, 1)} occured.

De�nition 13.4 Let A denote the collection of observable events. We assume
that they possess the following properties.

• If A ∈ A, then A ∈ A and Ω ∈ A.

• If A1, A2, . . . ∈ A, then A1 ∪A2 ∪ . . . ∈ A.

Proposition 13.5 If A and B are observable, then so is A ∩B.

Proof. Indeed, if A and B are observable, then

A ∩B = A ∪B ∈ A

in view of the De Morgan Rules. �

By the De Morgan Rules, this proposition remains true for any countable
number of events.

De�nition 13.6 In the following, by an experiment we mean the couple
K = (Ω,A).
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13.5 Probability space

Suppose that we perform an experiment K n times in a row, and every time we
observe whether or not a given event A ∈ A occurs. If A occurs kn times out of
n trials, then the relative frequency of A is:

kn
n

Experience shows that by raising n, the relative frequency exhibits a dump-
ing oscillation around a speci�c number. This number can be regarded as the
probability of A.

Instead of using this experimental approach, below we develop an axiomatic
introduction of probability. From the axioms we can derive the above experi-
mental fact.

De�nition 13.7 (Axioms of Probability) Consider an experiment K =
(Ω,A). By the probability we mean a function

P : A → [0, 1]

that satis�es the following two axioms:

1. P (Ω) = 1

2. If A1, A2, . . . ∈ A are pairwise mutually exclusive events, then

P (

∞⋃
k=1

Ak) =

∞∑
k=1

P (Ak)

In this case the triple (Ω,A, P ) is called a probability space.

This axiomatic approach is due to A. N. Kolmogorov (1933), and this can
be regarded as the origin of modern probability theory.

From the axioms we can easily derive the following properties of probability
spaces.
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Theorem 13.8

1. For any A ∈ A we have

P (A) = 1− P (A)

and consequently P (∅) = 0.

2. If A,B ∈ A and A ⊂ B, then

P (A) ≤ P (B)

3. If A,B ∈ A, then

P (A ∪B) = P (A) + P (B)− P (A ∩B)

Proof. 1. Since A ∪ A = Ω, moreover A and A are exclusive events, the
statement follows immediately from the axioms.

2. If A ⊂ B, then A ∪ (B ∩ A) = B, moreover A and B ∩ A are exclusive
events, therefore, by the axioms

P (B) = P (A) + P (B ∩A) ≥ P (A)

because P (B ∩A) ≥ 0.

The 3. statement is proven the following way. We divide the event A ∪ B
into disjoint pieces like this:

A ∪B = (A ∩B) ∪ (A ∩B) ∪ (A ∩B) .

Then, using the axioms, we get:

P (A ∪B) = P (A ∩B) + P (A ∩B) + P (A ∩B)

= P (A)− P (A ∩B) + P (B)− P (A ∩B) + P (A ∩B)

and the statement ensues. �

Example 13.9

In a Freshman class the probability that a randomly selected student passed
the mathematics exam is 0.72, passed the microeconomics exam is 0.66, and
passed both is 0.54. Find the probability that a randomly selected student

(a) passed at least one of those exams,

(b) passed the microeconomics exam, but did not pass the mathematics
exam,

(c) passed none of the exams.

Let A denote the event that a randomly selected student passed the math-
ematics exam, and B is the event that the student passed the microeconomics
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exam. Then P (A) = 0.72, P (B) = 0.66 and P (A∩B) = 0.54. Using the events
A and B, the desired probabilities can be given the following way.

(a) P (A ∪B) = P (A) + P (B)− P (A ∩B) = 0.84

(b) P (A ∩B) = P (B)− P (A ∩B) = 0.12

(c) P (A ∩B) = P (A ∪B) = 1− P (A ∪B) = 0.16

Recitation and Exercises

1. Reading: Textbook-2, Sections 2.1, 2.2, 2.3, 2.4, 2.5.

2. Homework: Textbook-2, Exercises 2.11, 2.19, 2.32, 2.33, 2.37, 2.38, 2.54,
2.58, 2.59, 2.61, 2.110, 2.112.

3. Review: Highschool Combinatorics and Binomial Theorem (Textbook-2,
Section 2.3), and "Probability Exercises"



Chapter 14

Sampling methods

14.1 Classical probability spaces

De�nition 14.1 Consider a probability space (Ω,A, P ). It is called a classical
probability space, if

• Ω is a �nite set,

• for every ω ∈ Ω we have {ω} ∈ A,

• every singleton subset of Ω has the same probability.

Obviously, if Ω contains exactly n elements, then for every ω ∈ Ω we get

P ({ω}) =
1

n

In particular, if the event A ⊂ Ω consists of k elements, then

P (A) =
k

n

This observation can be interpreted as the probability of A can be given like:

P (A) =
number of favorable outcomes
total number of outcomes

(14.1)

The formula (14.1) will be called the classical formula.

Example 14.2 A regular playing die is tossed twice in a row. What is the
probability that the sum of the two numbers is exactly 7?
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Let A denote the event that the sum is 7. Clearly, the sample space Ω con-
tains 36 elements (total number of outcomes), while A is a subset of 6 elements
containing the pairs (1, 6), (6, 1), (2, 5), (5, 2), (3, 4), (4, 3) (favorable outcomes).
Consequently

P (A) =
6

36
=

1

6

by making use of the classical formula (14.1).

Example 14.3 From a deck of 52 playing cards we draw 5 cards at random.
Find the probability that either all 5 cards are clubs, or at least one of them is
an Ace?

Introduce the following notations:

A = {all 5 cards are clubs} B = {at least one of them is Ace}

Obviously we are looking for P (A ∪ B). Since the draws of any 5 cards are
equally likely, therefore:

P (A) =

(
13
5

)(
52
5

) P (B) = 1−
(
48
5

)(
52
5

)
and further:

P (A ∩B) =

(
12
4

)(
52
5

)
By using the additive rule

P (A ∪B) = P (A) + P (B)− P (A ∩B) .

Example 14.4 On a seasonal sale in a supermarket there are 10 di�erent pairs
of shoes in a basket. A thief quickly grabs 4 pieces of shoes from the basket at
random and runs away. What is the probability that he gets at least 1 complete
pair?

Below we outline two approaches, but only one of them is correct.

• First select one pair, the other two pieces of shoes can be taken arbitrarily,
another pair, or any two of the remaining shoes, i.e.:

10
(
18
2

)(
20
4

)
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• Find the probability of not having a complete pair at all. This can be
done by selecting a single shoe, and then putting its matching pair aside.
Keep in mind that the order of the selection does not count. Then passing
to the complement event, we obtain

1−
20·18·16·14

4!(
20
4

)
Check out that the two probabilities do not coincide! Which one is correct (if
any)?

Example 14.5 Keep tossing a die until 6 comes out for the �rst time. What
is the probability that we need an even number of tosses?

Let A stand for the event that we need an even number of tosses and Ak is
the event that we need k tosses, respectively. Then we have (verify!)

P (Ak) =

(
5

6

)k−1
· 1

6

for every k = 1, 2, . . . The event A can be expressed like this:

A = A2 ∪A4 ∪ . . . =

∞⋃
k=1

A2k

On the right hand side the events mutually exclude each other, hence

P (A) =

∞∑
k=1

P (A2k) =

∞∑
k=1

(
5

6

)2k−1

· 1

6
=

5

11

14.2 Sampling without replacement

Consider a set of N objects so thatm of them are defective. Select a sample of n
objects from the whole set at random, without replacement (n ≤ m). Denote by
Ak the event, that the sample contains exactly k defective objects (0 ≤ k ≤ n).
Then

P (Ak) =

(
m
k

)
·
(
N−m
n−k

)(
N
n

)
which we call the formula of sampling without replacement.

Example 14.6 From a deck of 52 playing cards we draw 5 cards at random
without replacement. Find the probability that we selected exactly 2 diamonds.
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Let A denote the given event. Making use of our formula we get

P (A) =

(
13
2

)
·
(
39
3

)(
52
5

) .

In this argument the diamonds are the "defective objects".

Example 14.7 Determine the probability that in Hungarian lottery (5 winners
out of 90) we have at least 2 winning numbers on a lottery ticket �lled in at
random.

Denote by A the event that we have 2 winning numbers, and by Ak the event
that we have exactly k winning numbers on our ticket. Clearly, the events Ak are
mutually exclusive for k = 2, . . . , 5. On the other hand A = A2 ∪A3 ∪A4 ∪A5,
and this implies

P (A) =

5∑
k=2

P (Ak) =

5∑
k=2

(
5
k

)
·
(

85
5−k
)(

90
5

)
since the probability of the disjoint union is the sum of the probabilities.

Example 14.8 From a deck of 52 playing cards we select 5 cards at random,
without replacement. What is the probability that all 4 suits (clubs, diamonds,
hearts, spades) are represented in the sample?

Examine the following argument. Let A denote the event that all 4 suits
appear in the sample of 5 cards. Since the choice of any 5 cards is equally likely,
we deal with a classical probability space.

In order to �nd out the number of favorable outcomes, take into account
that we have 13 options for each suit. Once one card from each suit has been
taken, then any card can be chosen from the remaining 48 cards.

The total number of outcomes: as many as the number of selections of 5
cards out of 52. So:

P (A) =
134 · 48(

52
5

)
Is this the correct solution? If not, how could it be �xed?

14.3 Sampling with replacement

Consider again the set of N objects so that m of them are defective. Select n
objects at random from the whole set, consecutively one after another with re-
placement. Let Ak denote the event that the sample contains exactly k defective
items.
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Examine the draws of di�erent orders. Since the selection of k defectives
and n− k non-defectives in any order admits the probability

mk · (N −m)n−k

Nn
=
(m
N

)k (
1− m

N

)n−k
and we have exactly

(
n
k

)
options for such selections, moreover they mutually

exclude each other, we receive

P (Ak) =

(
n

k

)(m
N

)k (
1− m

N

)n−k
This equality is called the formula of sampling with replacement.

Example 14.9 Take 5 cards out of a deck of 52 cards at random, successively
with replacement. (The card taken at a time is always put back.) Find the
probability that this way

(a) exactly 2 diamonds are selected,

(b) at least 2 diamonds are selected.

Introduce the event Ak which means that exactly k diamonds are selected.
Then

(a) P (A2) =

(
5

2

)(
1

4

)2(
1− 1

4

)3

and

(b) P (A2 ∪ . . . ∪A5) =

5∑
k=2

(
5

k

)(
1

4

)k (
3

4

)5−k

because the events A2, . . . , A5 are mutually exclusive.

14.4 The Bernoulli experiment

The argument above can be generalized the following way. Suppose that the
probability of an event A in a given experiment is a speci�c number 0 ≤ p ≤ 1.

Let us assume that we carry out this experiment n times in a row (indepen-
dently of each other) and every time we observe whether or not A occurs. This
procedure is called the Bernoulli experiment.

Let 0 ≤ k ≤ n be a given integer. Denote by Ak the event that A occurs
exactly k times out of the n trials.

Following the reasoning, analogous to the previos section, we immediately
get

P (Ak) =

(
n

k

)
pk(1− p)n−k
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for every integer k = 0, 1, . . . , n.

Example 14.10 In the Hungarian lottery we say that a lottery ticket is a
winning ticket, if it contains at least two winning numbers. Suppose we purchase
20 tickets and �ll in them at random (independently of each other). Find the
probability that we will have at least 5 winning tickets.

For just one ticket the probability of being a winning ticket is:

p =

5∑
k=2

(
5
k

)
·
(

85
5−k
)(

90
5

)
Since this is true for every ticket, and the tickets are �lled in independently
from each other, this problem can be regarded as a Bernoulli experiment, with
the parameter p speci�ed above. Therefore, applying our formula:

20∑
k=5

(
20

k

)
pk(1− p)20−k

where p is the probability given above.

Recitation and Exercises

1. Reading: Textbook-2, Sections 2.1, 2.2, 2.3, 2.4, 2.5.

2. Homework: Textbook-2, Exercises 2.20, 2.39, 2.42, 2.48, 2.64, 2.71, 2.72,
2. 113, 2.114, 2.115, 2.116.

3. Review: Highschool Combinatorics and Binomial Theorem (Textbook-2,
Section 2.3), and "Probability Exercises"
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Conditional probability and

Bayes' Rule

15.1 Conditional probability

In several problems we need to �nd the probability of the event A under the a
priori condition that a certain event B occured. In such problems we take into
account only those elements of the sample space, which also belong to B.

This actually means that the sample space Ω is reduced to the subset B,
and we calculate the (conditional) probability of A with respect to B.

De�nition 15.1 Consider the probability space (Ω,A, P ) and an event B ∈ A
so that P (B) 6= 0. The conditional probability of the event A ∈ A with respect
to B (read: probability of A given B) is de�ned by the equality:

P (A|B) =
P (A ∩B)

P (B)

Example 15.2 We toss a pair of dice, but we cannot see the outcome. Someone
tells us that one of them is a 5. What is the probability that other one is 6?

ATTENTION! The answer is not 1/6 for the following reason!

Let A and B denote the following events:

B = {one of the tosses is 5} A = {the other one is 6}

On the one hand P (B) = 11/36 since there are 11 pairs that contain 5. On the
other hand A ∩B = {(5, 6), (6, 5)}, and hence P (A ∩B) = 2/36. Therefore:

P (A|B) =
P (A ∩B)

P (B)
=

2/36

11/36
=

2

11
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Example 15.3 We are looking for a friend in the university main building.
He can be in 5 rooms equally likely. The probability that he is in fact in the
building is 0 < p < 1. We have checked 4 of the 5 rooms, and he was in none of
them. What is the probability that he is in the �fth room?

Let Ak denote the event that our friend is in room number k (k = 1, . . . 5),
which means P (A1 ∪ . . .∪A5) = p. Since the events Ak are mutually exclusive,
this implies that P (Ak) = p/5 for every index k. Therefore, in view of the De
Morgan Rule we obtain:

P (A5|A1 ∩ . . . ∩A4) = P (A5|A1 ∪ . . . ∪A4)

=
P (A5 ∩ (A1 ∪ . . . ∪A4))

P (A1 ∪ . . . ∪A4)

Obviously (think about it!):

A5 ⊂ A1 ∪ . . . ∪A4

and hence
P (A5 ∩ (A1 ∪ . . . ∪A4)) = P (A5)

Consequently, the desired conditional probability is:

P (A5|A1 ∩ . . . ∩A4) = P (A5|A1 ∪ . . . ∪A4)

=
P (A5 ∩ (A1 ∪ . . . ∪A4))

P (A1 ∪ . . . ∪A4)

=
P (A5)

P (A1 ∪ . . . ∪A4)
=

p/5

1− 4p/5
=

p

5− 4p

15.2 Independence

Consider the following simple example. Toss a die twice in a row, and we cannot
see the result. Someone tells us that the �rst outcome is an odd number. Find
the probability that the sum of the two numbers is 7.

Introduce the events A and B the following way:

A = {the sum is 7} B = {the �rst outcome is odd}

Then, by the de�nition of the conditional probability

P (A|B) =
P (A ∩B)

P (B)
=

3/36

18/36
=

1

6
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In view of one of a previous example this means

P (A|B) = P (A)

that is "the occurance of B has no impact on the probability of A". This fact
is expressed like "the event A is independent of the event B".

In case of P (B) 6= 0 the condition P (A|B) = P (A) is equivalent to the
equality:

P (A ∩B) = P (A) · P (B) (15.1)

Since we �gure that independence is a symmetric relation (i.e. if A is indepen-
dent of B, then B is also independent of A) and the above equality is visibly
symmetric, relation (15.1) can serve as a comfortable de�nition for indepen-
dence.

De�nition 15.4 Let (Ω,A, P ) be a probability space, and A,B ∈ A are
observable events. We say that A and B are independent , if they ful�ll the
condition (15.1).

Example 15.5 From a deck of 52 cards we draw 2 cards in succession with
replacement. Find the probability that the �rst draw is a diamond, and the
second draw is an Ace.

Introduce the following events:

A = {�rst draw is a diamond} B = {second draw is an Ace}

Then

P (A ∩B) =
13 · 4
522

=
13

52
· 4

52
= P (A) · P (B)

that tells us that the events A and B are independent.

ATTENTION! We NEVER argue like: since the events A and B are
"visibly" independent, therefore P (A∩B) = P (A) ·P (B). On the contrary: we
conclude the independence of events by verifying this equality!

15.3 Theorem of Total Probability

Example 15.6 There are 3 identical envelopes on our desk,

1. the �rst contains 2 of 1000 Ft bills and 3 of 2000 Ft bills (banknotes),

2. the second contains 5 of 1000 Ft bills and 2 of 2000 Ft bills,

3. the third contains 5 of 2000 Ft bills.
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We select one of the envelopes at random and draw one of the bills from the
envelope. What is the probability that we take a 2000 Ft bill?

Let A denote the event that we draw a 2000 Ft bill. The probability P (A)
would be easy to determine if we knew, which envelope is selected. In particular,
if Bk stands for the event that envelope k is selected, then the conditional
probabilities P (A|Bk) are 3/5, 2/7 and 1 respectively.

This observation immediately gives an idea of how to solve the problem. The
events Bk are mutually exclusive and their union is the certain event. Thus:

A = A ∩ Ω = A ∩ (B1 ∪B2 ∪B3) = (A ∩B1) ∪ (A ∩B2) ∪ (A ∩B3)

Since the events on the right-hand side are exclusive:

P (A) = P (A ∩B1) + P (A ∩B2) + P (A ∩B3)

= P (A|B1)P (B1) + P (A|B2)P (B2) + P (A|B3)P (B3)

=
3

5
· 1

3
+

2

7
· 1

3
+ 1 · 1

3

The argument above can be exteded to an arbitrary number of events Bk.
This leads us to the following de�nition.

De�nition 15.7 We say that the observable events B1, B2, . . . ∈ A form a
partition of the sample space, if none of them has probability zero, and further

1. they are mutually exclusive, i.e. Bi ∩Bj = ∅ if i 6= j,

2. one of them occurs, i.e. B1 ∪B2 ∪ . . . = Ω.

Following the analogous argument of Example 15.6 for an arbitrary number
of events Bk, we come up with the following theorem.

Theorem 15.8 (Theorem of Total Probability) Let us suppose that in the
probability space (Ω,A, P ) the events B1, B2, . . . form a partition of the sample
space. Then for any event A ∈ A we have

P (A) = P (A|B1)P (B1) + P (A|B2)P (B2) + . . .

Proof. Indeed, if the events Bk form a partition of the sample space, then

A = (A ∩B1) ∪ (A ∩B2) ∪ (A ∩B3) ∪ . . .
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where the terms of the union are mutually exclusive. Thus:

P (A) = P (A ∩B1) + P (A ∩B2) + P (A ∩B3) + . . .

By the very de�nition of the conditional probability, for every index k

P (A ∩Bk) = P (A|Bk) · P (Bk)

and the theorem ensues. �

Example 15.9 If the probability that the number of incoming calls to a call
center is n on a given day is given by 0 < qn < 1, and every call is a wrong
number with probability 0 < p < 1 (independently of each other), �nd the
probability that the number of wrong calls is exactly k on that day.

Introduce the following notations. Let A be the event that the center receives
k wrong calls, and Bn is the event that the total number of incoming calls is n.
In this case the events Bn form a partition of the sample space, hence by the
theorem of total probability

P (A) =

∞∑
n=1

P (A|Bn) · P (Bn) =

∞∑
n=k

qn

(
n

k

)
pk(1− p)n−k

In fact, for n ≥ k the number of wrong calls can be regarded as the outcome of
a Bernoulli experiment: how many wrong calls do we have out of n incoming
calls. Keep in mind that we have P (A|Bn) = 0, for n < k.

15.4 Bayes' Rule

Let us return to Example 15.6. Assume that someone has performed the draw
(we did not see it) and tells us that the draw is a 2000 Ft bill. What is the
probability that the bill was taken from the �rst envelope?

Using our former notations, we need to �nd the conditional probability
P (B1|A).

P (B1|A) =
P (A ∩B1)

P (A)
=
P (A|B1)P (B1)

P (A)

The denominator of the fraction on the right-hand side can be evaluated by the
theorem of total probability:

P (B1|A) =
P (A|B1)P (B1)

P (A|B1)P (B1) + P (A|B2)P (B2) + P (A|B3)P (B3)

=
3
5 ·

1
3

3
5 ·

1
3 + 2

7 ·
1
3 + 1 · 13
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This argument can be extended to any partition of the sample space.

Theorem 15.10 (Bayes' Rule) Let us suppose that in the probability space
(Ω,A, P ) the events B1, B2, . . . form a partition of the sample space. Then for
any event A ∈ A, P (A) 6= 0 and any index i we have

P (Bi|A) =
P (A|Bi)P (Bi)

P (A|B1)P (B1) + P (A|B2)P (B2) + . . .

Proof. Indeed, by the de�nition of the conditional probability

P (Bi|A) =
P (A ∩Bi)
P (A)

=
P (A|Bi)P (Bi)

P (A)
,

and our statement is proven by applying the theorem of total probability. �

Example 15.11 For instance, in our call center Example 15.9 the probability
that the number of incoming calls on a given day is i provided that exactly k
wrong calls have been registered is

P (Bi|A) =
qi
(
i
k

)
pk(1− p)i−k∑∞

n=k qn
(
n
k

)
pk(1− p)n−k

for i ≥ k, while this probability is 0, for i < k.

Recitation and Exercises

1. Reading: Textbook-2, Sections 2.6 and 2.7

2. Homework: Textbook-2, Exercises 2.80, 2.81, 2.87, 2.95, 2.97, 2.100, 2.109,
2.118

3. Review: Highschool Combinatorics and Binomial Theorem (Textbook-2,
Section 2.3), and "Probability Exercises"



Chapter 16

Random variables and

distributions

16.1 Random variables

De�nition 16.1 Consider a probability space (Ω,A, P ). The function

X : Ω→ R

is called random variable, if for any x ∈ R

{X < x} = {ω ∈ Ω : X(ω) < x} ∈ A

that is all level sets are observable (and hence possess a probability).

In the examples below specify the range R of the given random variables!

Example 16.2

1. Toss a pair of dice. Let X denote the sum of the numbers. Then R =
{2, 3, . . . , 12}

2. Let X be the least winning number in Hungarian lottery. Then R =
{1, 2, . . . , 86}

3. Keep tossing a die until 6 comes out for the �rst time. Denote by X the
number of tosses. Then R = N.

4. Pick a point arbitrarily on the unit disc (with center at the origin and
radius 1). Let X denote the distance of the point from the origin. Then
R = [0, 1].

109
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De�nition 16.3 We say that a random variable is discrete, if its range is
a countable set (�nite or in�nite). That is the elements of the range can be
arranged in a �nite or in�nite sequence.

In our examples the �rst three random variables are discrete, but the fourth
is not.

16.2 Distribution of discrete variables

De�nition 16.4 Let X be a discrete random variable, whose range is R =
{x1, x2, . . .}. The sequence

pk = P (X = xk) , k = 1, 2, . . .

is called the distribution of X.

Example 16.5 Consider our introductory examples for random variables

1. If X means the sum of the numbers when a pair of dice tossed, then the
distribution can be given by the following chart :

xk 2 3 4 . . . 12
pk

1
36

2
36

3
36 . . . 1

36

2. If X means the least winning number in lottery, then the distribution can
be given by the following formula:

pk =

(
90−k

4

)(
90
5

) k = 1, 2, . . . 86

3. If X means the number of tosses needed to get the �rst 6, the distribution
of X is:

pk =

(
5

6

)k−1
· 1

6
k = 1, 2, . . .

Unlike in the previous two examples, this distribution is an in�nite se-
quence.

The most important properties of distributions are summed up in the fol-
lowing theorem.

Theorem 16.6 Consider a discrete random variable X with range R =
{x1, x2, . . .} and distribution pk = P (X = xk), k = 1, 2, . . .. Then
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• 0 ≤ pk ≤ 1 for all indices k = 1, 2, . . ..

• p1 + p2 + . . . = 1.

• If a < b any real numbers, then

P (a < X < b) =
∑

a<xk<b

pk

where the sum is taken for all indices k such that the inequality a < xk < b
holds true. The last statement remains true if instead of the strict inequal-
ities, the signs ≤ are inserted simultaneously on both sides.

16.3 The cumulative distribution function

De�nition 16.7 Consider a probability space (Ω,A, P ), and a random variable
X : Ω→ R. For every x ∈ R set

F (x) = P (X < x) .

The function F : R→ [0, 1] is called the cumulative distribution function of X.
(Or sometimes brie�y distribution function.)

Example 16.8 It is easy to see that the distribution function of the random
variable X de�ned in the introductory example 4, is

F (x) =

 0 if x ≤ 0
x2 if 0 < x ≤ 1
1 if x > 1

(16.1)

In fact we mean that the probability that the randomly picked point belongs
to a given subset of the unit disc is proportional to the area of the subset. In
particular, for instance P (0 ≤ X < 1/2) = 1/4.

In several problems in probability and statistics, and their applications we
need to �nd a a probability of the form P (a ≤ X < b). This probability can
be expressed in term of the distribution function. The basic properties of the
distribution function are summarized in the theorem below.

Theorem 16.9 Let X be a random variable and consider its distribution
function F .

• For every x ∈ R we have 0 ≤ F (x) ≤ 1.
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• F is monotone increasing and at every point continuous from the left.

• lim
x→−∞

F (x) = 0 and lim
x→+∞

F (x) = 1.

• For any real numbers a < b we have

P (a ≤ X < b) = F (b)− F (a) .

If the range of a discrete random variable X is given by R = {x1, x2, . . .},
where x1 < x2 < . . ., and X takes these values with the probabilities p1, p2, . . .
respectively, then the distribution function of X has the form:

F (x) =

{
0 if x ≤ x1
p1 + . . .+ pk if xk < x ≤ xk+1

for each k = 1, 2, . . .. Sketch the graph!

This tells us that in this case the distribution function is piecewise constant.
Instead of using the formula P (a ≤ X < b) = F (b) − F (a), it is reasonable to
collect all elements of the range of X that are in the open interval (a, b). In
particular, if P (X = xk) = pk for every k, then

P (a ≤ X < b) =
∑

a≤xk<b

pk

On the right-hand side only the probabilities P (X = xk) appear, therefore, it
is more convenient to rely on the distribution X.

16.4 The density function

De�nition 16.10 We say that X is continuously distributed, if there exists
an integrable function f on the real line with

F (x) =

∫ x

−∞
f(t) dt

for every x ∈ R. In this case the function f is called the density function of X.

For instance, in the example (16.1) we can easily verify that

f(t) =

{
2t if 0 < t < 1
0 elsewhere

If the random variable X is continuously distributed, then the distribution func-
tion F is continuous. Moreover, at every point x where the density function f
is continuous, the distribution function F is di�erentiable, namely

F ′(x) = f(x)
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Theorem 16.11 If X is continuously distributed and f is its density function,
then for any real numbers a < b

P (a ≤ X < b) =

∫ b

a

f(t) dt

What can we say about the probability that the random variable X takes a
single point? Let a ∈ R be any real number, then we conclude that

P (X = a) = P (

∞⋂
n=1

{a ≤ X < a+
1

n
}) = lim

n→∞
P (a ≤ X < a+

1

n
)

= lim
n→∞

(F (a+
1

n
)− F (a)) = lim

x→a+
F (x)− F (a)

Consequently P (X = a) equals the "jump" of F at the point a. ATTEN-
TION: Why can we pass to the limit in the �rst line of the array formula?

A simple consequence of the previous argument is that P (X = a) = 0 if
and only if F is continuous at the point a. In particular, if X is continuously
distributed, then F is continuous on the whole real line, hence for any real
numbers a < b we get

P (a < X < b) = P (a ≤ X ≤ b)

We sum up the basic properties of density functions.

Theorem 16.12 If f is the density function of the random variable X, then

1. f(x) ≥ 0 for every x ∈ R,

2. ∫ +∞

−∞
f(x) dx = 1 ,

3. if a < b are any real numbers, then

P (a < X < b) = P (a ≤ X ≤ b) =

∫ b

a

f(x) dx .

Example 16.13 Let us suppose that the density function of X is given by

f(x) =

 x if 0 < x ≤ 1
2− x if 1 < x < 2
0 elsewhere
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ATTENTION! Verify that f ful�lls all conditions of the previous theorem, so
it is in fact a density function.

Then, for instance

P (0 ≤ X ≤ 3/2) = P (0 < X < 3/2) =

∫ 3/2

0

f(x) dx

=

∫ 1

0

x dx+

∫ 3/2

1

(2− x) dx

= 1−
∫ 2

3/2

(2− x) dx =
7

8

Recitation and Exercises

1. Reading: Textbook-2, Sections 3.1, 3.2 and 3.3

2. Homework: Textbook-2, Exercises 3.7, 3.9, 3.11, 3.14, 3.21, 3.22, 3.25,
3.26, 3.32 and 3.36

3. Review: Calculus, integration and in�nite series and "Probability Exer-
cises"



Chapter 17

Mean and variance

In everyday language by the mean (or expected value) of a random variable we
think of the weighted average, by the standard deviation we think of the average
deviation from the mean. Precise de�nitions will follow below.

17.1 Mean of discrete distributions

De�nition 17.1 Consider a discrete random variable X whose distribution is
given by

P (X = xk) = pk k = 1, 2, . . .

We say that X has a mean (or expected value) if the series
∑∞
k=1 |xk| · pk is

convergent. In this case the sum

E(X) =

∞∑
k=1

xk · pk

is called the mean (or expected value) of X.

Remark that the convergence of the series
∑∞
k=1 |xk| · pk is an important

condition, because otherwise the sum E(X) might depend on the rearrangement
of the terms.

Example 17.2 Toss a pair of playing dice. Find the expected value of the
sum of the two numbers.

Let X denote the sum of the two numbers, then the distribution of X is
given in Example 16.5. Therefore, the mean of the sum is:

E(X) =

12∑
k=2

kpk = 2 · 1

36
+ 3 · 2

36
+ . . .+ 12 · 1

36
= 7 .

115
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Example 17.3 Take a sample of 5 cards from a deck of 52 playing cards at
random. Find the expected number of diamonds in the sample.

Denote by X the number of diamonds in the sample. By using sampling
without replacement, the distribution of X is given by:

P (X = k) =

(
13
k

)
·
(

39
5−k
)(

52
5

) k = 0, . . . , 5

Hence, the expected value is:

E(X) =

5∑
k=0

kP (X = k) =

5∑
k=0

k

(
13
k

)
·
(

39
5−k
)(

52
5

)
=

13(
52
2

) 5∑
k=1

(
12

k − 1

)(
39

4− (k − 1)

)
=

13(
52
5

) · (51

4

)
=

5

4
.

Example 17.4 Consider the Bernoulli experiment that we discussed in Section
14.4. and determine the expected number of occurances of the event A out of
n trials.

Let X denote the number of times A occurs, then the distribution of X is:

P (X = k) =

(
n

k

)
pk(1− p)n−k k = 0, 1, . . . , n

By virtue of the binomial theorem, the mean of X is:

E(X) =

n∑
k=0

k

(
n

k

)
pk(1− p)n−k

= np

n∑
k=1

(n− 1)!

(k − 1)!(n− k)!
pk−1(1− p)n−k

= np

n∑
k=1

(
n− 1

k − 1

)
pk−1(1− p)n−k = np
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17.2 Mean of in�nite distributions

In this section we investigate discrete random variables with in�nite range.

Example 17.5 We keep tossing a die until 6 comes out for the �rst time.
What is the expected number of tosses?

If X means the number of tosses, then the distribution of X is given by

P (X = k) =

(
5

6

)k−1
· 1

6
k = 1, 2, . . .

Thus the expected value is

E(X) =
∞∑
k=1

k ·
(

5

6

)k−1
· 1

6
=

1

6
· 1

(1− 5/6)2
= 6

Example 17.6 Let λ be a given positive number, and consider a random
variable X with the following distribution

P (X = k) =
λk

k!
e−λ k = 0, 1, 2, . . .

In view of the power series of the exponential function, the mean of X is:

E(X) =

∞∑
k=0

k
λk

k!
e−λ = λ

∞∑
k=1

λk−1

(k − 1)!
e−λ

= λe−λ
∞∑
i=0

λi

i!
= λe−λeλ = λ

Example 17.7 In a box there is a black and a white ball. We take one ball at
random. If it is black, we put it back, and add another black ball. We continue
this process until the white ball is selected. Find the expected number of draws.

If X stands for the number of draws, then the distribution of X can be given
like P (X = 1) = 1/2, and:

P (X = k) =
1

2
· 2

3
· 3

4
· · · k − 1

k
· 1

k + 1
=

1

k(k + 1)
, k = 2, 3, . . .

Therefore, for the mean of X we obtain the following in�nite series:

E(X) =

∞∑
k=1

kP (X = k) =

∞∑
k=1

k
1

k(k + 1)
=

∞∑
k=1

1

k + 1

Apart from the �rst term, this series exactly coincides with the harmonic series,
which is divergent. Consequently, this random variable does not have a mean.
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17.3 Mean of continuous distributions

De�nition 17.8 Let X be a continuously distributed random variable with
density function f . We say that X has a mean if the improper integral

∫∞
−∞ |x| ·

f(x) dx is convergent. In this case the integral

E(X) =

∫ ∞
−∞

x · f(x) dx

is called the mean (or expected value) of X.

Example 17.9 Verify that the function f below de�nes a density function

f(x) =
1

π
· 1

1 + x2
−∞ < x <∞

(this is the so-called Cauchy distribution), but it has no mean, since the im-
proper integral

1

π

∫ ∞
−∞

x

1 + x2
dx

is divergent. See Example 9.5 for the details.

Example 17.10 Consider an interval [a, b] on the real line, and suppose the
density function of the random variable X is given by

f(x) =

{
1
b−a if a < x < b

0 elsewhere

Verify that f is really a density function! Then the mean of X is

E(X) =

∫ b

a

x

b− a
dx =

1

b− a
· b

2 − a2

2
=
a+ b

2

which is the midpoint of the interval [a, b].

17.4 Basic properties of the mean

The mean E(X2) is called the second moment of the random variable X (if it
exists). It can be shown that

E(X2) =


∑
k

x2kpk if X is discrete∫ ∞
−∞

x2f(x) dx if X is continuous
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Below two fundamental properties of the mean are formulated.

Theorem 17.11

1. If X has a mean, then for any real numbers α and β E(αX + β) =
αE(X) + β.

2. If E(X), E(X2) exist, then E(αX2 + βX + γ) = αE(X2) + βE(X) + γ.

Example 17.12 Let λ be a positive number, and assume that the density
function of X is given by

f(x) =

{
λe−λx if x > 0
0 elsewhere.

Based on Example 9.3 this is really a density function, since∫ ∞
0

f(x) dx = 1 .

On the other hand, Example 9.8 shows that the mean is

E(X) =

∫ ∞
0

xf(x) dx =
1

λ
.

The second moment can be evaluated by integration by parts (see Example 9.9):

E(X2) =

∫ ∞
0

x2f(x) dx =
2

λ2
.

17.5 Variance and standard deviation

The variance of a random variable is the average squared deviation from the
mean.

De�nition 17.13 The variance of a random variable of X (if it exists) is
de�ned by

V ar(X) = E((X − E(X))2)

Then the standard deviation of X is D(X) =
√
V ar(X).

Sometimes the notation D2(X) is also used for the variance (for obvious
reason).
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The variance can be evaluated in the following simpli�ed way:

V ar(X) = E((X − E(X))2) = E(X2 − 2E(X)X + E(X)2)

= E(X2)− 2E(X)2 + E(X)2 = E(X2)− E(X)2

Basic properties of the variance:

V ar(αX + β) = α2V ar(X), D(αX + β) = |α| ·D(X)

Verify these two directly, based on the de�nition!

Example 17.14 Find the variance and standard deviation of the continu-
ously distributed random variable X in Example 17.12 (where λ > 0 is a given
constant).

V ar(X) = E(X2)− E(X)2 =
2

λ2
− 1

λ2
=

1

λ2
,

and in particular

D(X) =
1

λ

Example 17.15 Consider now the continuously distributed random variable
X examined in Example 17.10. We can calculate the second moment this way:

E(X2) =

∫ ∞
−∞

x2f(x) dx =

∫ b

a

x2

b− a
dx =

1

b− a

[
x3

3

]b
a

=
b3 − a3

3(b− a)
=
b2 + ab+ a2

3

Therefore, the variance is:

V ar(X) = E(X2)− E(X)2 =
b2 + ab+ a2

3
− a2 + 2ab+ b2

4
=

(b− a)2

12

moreover, the standard deviation of X is the square root of the variance:

D(X) =
b− a
2
√

3
.

Recitation and Exercises

1. Reading: Textbook-2, Sections 4.1 and 4.2.

2. Homework: Textbook-2, Exercises 4.1, 4.2, 4.4, 4.8, 4.12, 4.13, 4.14, 4.34,
4.37, 4.38, 4.43 and 4.50

3. Review: Calculus, integration, improper integrals and in�nite series, and
"Probability Exercises"
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Special discrete distributions

This chapter gives a summary of the most widely applied discrete distributions.

18.1 Characteristic distribution

Let (Ω,A, P ) be a probability space and consider an event A ∈ A with P (A) = p,
and 0 < p < 1. Then the random variable

X =

{
1 if A occurs
0 if A does not occur

possesses the distribution

P (X = 0) = 1− p P (X = 1) = p

This is called the characteristic distribution associated with the event A.

Theorem 18.1

• The parameter of the distribution is: 0 < p < 1.

• The mean of this distribution: E(X) = p

• The variance of this distribution: V ar(X) = p(1− p).

Proof. We only need to verify the variance. Since the second moment is
E(X2) = p, the statement ensues. �
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18.2 Binomial distribution

Let (Ω,A, P ) be a probability space, and consider the Bernoulli experiment,
where we carry out n independent experiments in a row, and every time we
observe if a given event A occurs. Suppose that P (A) = p, 0 < p < 1 is given.
Let X denote how many times A comes out. By the Bernoulli experiment the
distribution of X is given by

P (X = k) =

(
n

k

)
pk(1− p)n−k k = 0, 1, 2, . . . , n

This distribution is called the binomial distribution.

Theorem 18.2

• The parameters of the distribution: n ∈ N and 0 < p < 1.

• The mean of the distribution: E(X) = np

• The variance of the distribution: V ar(X) = np(1− p).

Proof. In view of Example 17.4 we only need to check the variance First
�nd the second moment.

E(X2) =

n∑
k=1

k2
(
n

k

)
pk(1− p)n−k =

=

n∑
k=2

k(k − 1)

(
n

k

)
pk(1− p)n−k +

n∑
k=1

k

(
n

k

)
pk(1− p)n−k

= n(n− 1)p2
n∑
k=2

(
n− 2

k − 2

)
pk−2(1− p)n−k + np = (n2 − n)p2 + np .

Therefore, the variance is

V ar(X) = E(X2)− E(X)2 = n(n− 1)p2 + np− n2p2 = np(1− p)

where we observed that the second sum in the second line is precisely the mean.
�

18.3 Hypergeometric distribution

Examine the following sampling without replacement problem. Consider a set
of N objects in which m of them are defective. Select a sample of n objects
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without replacement from the whole set (n ≤ m). Let X denote the number of
defective objects in the sample. Then the distribution of X is:

P (X = k) =

(
m
k

)
·
(
N−m
n−k

)(
N
n

) k = 0, 1, 2, . . . , n

This distribution is called the hypergeometric distribution.

Theorem 18.3

• The parameters of the distribution: N,m, n ∈ N.

• The mean of the distribution:

E(X) = n · m
N

• The variance of the distribution:

V ar(X) =
N − n
N − 1

· n · m
N

(
1− m

N

)
.

Proof. By applying the argument of Example 17.3, we again only have to
calculate the variance. First �nd the second moment.

E(X2) =

n∑
k=1

k2
(
m
k

)(
N−m
n−k

)(
N
n

) =

n∑
k=2

k(k − 1)

(
m
k

)(
N−m
n−k

)(
N
n

) +

n∑
k=1

k

(
m
k

)(
N−m
n−k

)(
N
n

)
=

m(m− 1)n(n− 1)

N(N − 1)

n∑
k=2

(
m−2
k−2

)
·
(
N−m
n−k+2

)(
N−2
n−2

) + n
m

N

=
m(m− 1)n(n− 1)

N(N − 1)
+ n

m

N
.

Then we conclude

V ar(X) =
m(m− 1)n(n− 1)

N(N − 1)
+ n

m

N
− n2m

2

N2
=
N − n
N − 1

· n · m
N

(
1− m

N

)
,

just as we stated. �

18.4 Geometric distribution

Take a probability space (Ω,A, P ), and consider an event A such that P (A) = p,
wher 0 < p < 1 is given. Keep performing the experiment until the event A
occurs for the �rst time. Let X denote the number of trials. The distribution
of X is given by:

P (X = k) = (1− p)k−1p k = 1, 2, . . .
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This distribution is called the geometric distribution.

Theorem 18.4

• The parameter of the distribution: 0 < p < 1.

• The mean of the distribution:

E(X) =
1

p

• The variance of the distribution:

V ar(X) =
1− p
p2

.

Proof. The mean of this distribution is easily obtained by following the
argument of Example 17.5, so we only need to �nd the variance. The second
moment can be evaluated the following way. Using the second derivative of the
power series at |x| < 1, we have

∞∑
k=2

k(k − 1)xk−2 =
2

(1− x)3

If we employ this identity with x = 1− p we receive

E(X2) =

∞∑
k=1

k2(1− p)k−1p =

∞∑
k=2

k(k − 1)(1− p)k−1p+

∞∑
k=1

k(1− p)k−1p

= p(1− p)
∞∑
k=1

k(k − 1)(1− p)k−2 +
1

p
=

2p(1− p)
p3

+
1

p
.

Thus we get

V ar(X) = E(X2)− E(X)2 =
2p(1− p)

p3
+

1

p
− 1

p2
=

1− p
p2

and this is what we needed. �

18.5 Poisson distribution

Suppose that X is a random variable, whose range is {0}∪N and its distribution
is de�ned by

P (X = k) =
λk

k!
e−λ k = 0, 1, 2, . . .

wher λ > 0 is a given number.
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It is not hard to see that we really de�ned a distribution. Indeed,

∞∑
k=0

λk

k!
e−λ = e−λ · eλ = 1

based on the power series of the natural exponential function. This in�nite
distribution is called the Poisson distribution.

Theorem 18.5

• The parameter of the distribution: λ > 0.

• The mean of the distribution: E(X) = λ,

• The variance of the distribution: V ar(X) = λ.

Proof. In view of Example 17.6 we only have to calculate the variance. The
second moment is obtained as follows.

E(X2) =

∞∑
k=1

k2
λk

k!
e−λ =

∞∑
k=1

k(k − 1)
λk

k!
e−λ +

∞∑
k=1

k
λk

k!
e−λ

= λ2
∞∑
k=2

λk−2

(k − 2)!
e−λ + λ .

Hence, the variance is

V ar(X) = E(X2)− E(X)2 = λ2 + λ− λ2 = λ

and that completes the proof. �

Let us remark that the Poisson distribution can be regarded as the "limit
distribution" of the binomial distribution as it is explained in the following.

Theorem 18.6 If λ > 0 is �xed and 0 < pn < 1 is a sequence with npn = λ,
then

lim
n→∞

(
n

k

)
pkn(1− pn)n−k =

λk

k!
e−λ

for every k = 0, 1, 2, . . ..

Proof. Indeed, for each �xed index k we have(
n

k

)
pkn(1− pn)n−k =

(
n

k

)(
λ

n

)k (
1− λ

n

)n−k
=

n(n− 1) . . . (n− k + 1)

nk
· λ

k

k!

(
1− λ

n

)n(
1− λ

n

)−k
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Here examine the limits of the four factors separately. It is easy to see that they
are 1, λk/k!, e−λ and 1 respectively. That proves our theorem. �

Practically, this theorem means that for large values of n and for small values
of p the binomial distribution can be approximated by the Poisson distribution,
i.e. (

n

k

)
pkn(1− pn)n−k ≈ λk

k!
e−λ

for every index 0 ≤ k ≤ n.

Example 18.7 Let us suppose that in a brand new Suzuki Vitara the proba-
bility that the airbag is defective, is 0.002 independently from each other. The
factory announces withdrawal if at least 10 malfunctions are reported for the
2000 cars that are manufactured in a month. Find the probability that no
withdrawal has to be announced.

let X denote the number of defective cars in a given month. Since this is
a Bernoulli-experiment (the probability of malfunction is 0.002 independently
from each other), it follows that X has binomial distribution with parameters
n = 2000 and p = 0.002. Therefore the exact value of the probabilty is

P (X ≤ 9) =

9∑
k=0

(
2000

k

)
0.002k0.9982000−k

which not easy to handle. Based on our theorem, we can give an approximation
of this probability by using the Poisson distribution (we say that "n is su�ciently
large and p is su�ciently small"), moreover λ = np = 4, so

9∑
k=0

(
2000

k

)
0.002k0.9982000−k ≈

9∑
k=0

4k

k!
e−4 ≈ 0.9919

This latter value can be determined by looking up in the Poisson tables that
can be found on page 732 in our Textbook.

Recitation and Exercises

1. Reading: Textbook-2, Sections 5.1, 5.2, 5.3 and 5.5

2. Homework: Textbook-2, Exercises 5.5, 5.9, 5.10, 5.15, 5.27, 5.33, 5.47,
5.56, 5.60, 5.66, 5.70 and 5.72

3. Review: Calculus, integration, improper integrals and in�nite series, and
"Probability Exercises"



Chapter 19

Special continuous

distributions

19.1 Uniform distribution

Let [a, b] be a given �nite interval. Consider a random variable X with the
following density function:

f(x) =

{
1
b−a if a < x < b

0 elsewhere

This random variableX is said to have uniform distribution on the interval [a, b].
The name comes from the fact that the probability that X is in a subinterval
of [a, b] is proportional to the length of the subinterval.

Theorem 19.1

• The parameters of the distribution: a and b, a < b.

• The mean of the distribution:

E(X) =
a+ b

2

• The variance of the distribution:

V ar(X) =
(b− a)2

12
.

Proof. These statements are immediate consequences of the results in Ex-
amples 17.10 and 17.15. �

Example 19.2 Let X be a uniformly distributed random variable with
E(X) = 5 and V ar(X) = 3. Find the probability P (4 < X < 10).

127
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The unknown endpoints of the interval a and b satisfy the following equa-
tions:

a+ b

2
= 5

(b− a)2

12
= 3

whose solutions are a = 2 and b = 8. Therefore,

P (4 < X < 10) = P (4 < X < 8) =
2

3

since the subinterval beyond [4, 8] comes with 0 probability.

19.2 Exponential distribution

Let λ > 0 be a �xed number. Consider the random variableX with the following
density function

f(x) =

{
λe−λx if x > 0
0 elsewhere

In this case we say that X has exponential distribution. nevezzük.

ATTENTION: Verify that f really de�nes a density function! Sketch the
graph of the function!

Theorem 19.3

• The parameter of the distribution: λ > 0.

• The mean of the distribution: E(X) = 1/λ,

• The variance of the distribution: V ar(X) = 1/λ2.

Proof. Our theorem is an immediate consequence of the equalities in Ex-
amples 17.12 and 17.14. �

Example 19.4 Consider an exponentially distributed random variable X with
a given parameter λ > 0. Find the probability P (X > E(X)).

Our theorem claims that E(X) = 1/λ, thus

P (X > E(X)) = P

(
X >

1

λ

)
=

∫ ∞
1/λ

λe−λx dx =
[
−e−λx

]∞
1/λ

=
1

e
.
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We say that the exponential distribution is memoryless in the following sense.
If X is exponentially distributed with a given parameter λ > 0, and t, s > 0 are
given positive numbers, then

P (X > t+ s|X > t) = P (X > s) .

Indeed, the event {X > t+ s} implies the event {X > t}, therefore, the condi-
tional probability on the left-hand side can be written like

P (X > t+ s|X > t) =
P (X > t+ s)

P (X > t)
=

1−
∫ t+s
0

λe−λx dx

1−
∫ t
0
λe−λx dx

=
e−λ(t+s)

e−λt
= e−λs = 1−

∫ s

0

λe−λx dx = P (X > s) .

If for instance X denotes the waiting time between two occurances (i.e. two
telephone calls, or two customers, etc.), then the lack of memory means that
the further waiting time does not depend on how much we have been waiting.

Conversely, it can also be proven that if a continuous distribution is memo-
ryless, then it is necessarily the exponential distribution.

There is an interesting relationship between the Poisson distribution and the
exponential distribution. In particular, if the waiting times between successive
occurances are independent, exponentially distributed random variables with
identical parameter λ > 0, then the number of occurances in a unit time inter-
val has Poisson distribution with the same parameter. These features will be
discussed in later chapters.

19.3 The standard normal distribution

Because of the central role of the standard normal distribution we use a distin-
guished notation for its density function and cumulative distribution function.

De�nition 19.5 We say that the random variable Z has standard normal
distribution, if its density function is given by

ϕ(x) =
1√
2π
e−

x2

2 −∞ < x <∞

In view of formula (9.2), we see that ϕ really de�nes a density function.
As an exercise analyze the function ϕ, and show that it possesses the following
properties.

lim
x→−∞

ϕ(x) = lim
x→+∞

ϕ(x) = 0



130 CHAPTER 19. SPECIAL CONTINUOUS DISTRIBUTIONS

moreover ϕ is strictly monotone increasing on the interval (−∞, 0), strictly
monotone decreasing on the interval (0,∞), and reaches its global maximum at
x = 0.

By analyzing the second derivative, we can see that ϕ is convex on the
intervals (−∞, 1) and (1,+∞), while it is concave on the interval (−1, 1), and
consequently has points of in�ection at x = −1 and x = 1 respectively.

EXERCISE: CREATE THE GRAPH OF THE FUNCTION!

Theorem 19.6

• The parameter of the distribution: no parameter.

• The mean of the distribution: E(Z) = 0.

• The variance of the distribution: V ar(Z) = 1.

Proof. Example 9.6 shows that E(Z) = 0, and equality (9.3) tells us that
E(Z2) = 1. Therefore

V ar(Z) = E(Z2)− E(Z)2 = 1 .

as we stated. �

Let Φ denote the standard normal cumulative distribution function, i.e.

Φ(x) =

∫ x

−∞
ϕ(t) dt .

This function has the properties of cumulative distribution functions, but its
interesting feature is that it cannot be expressed explicitly in terms of elementary
functions or their �nite combinations.

Observe however that ϕ is an even function, in other words it is symmetric
with respect to the y-axis. This implies that Φ(0) = 1/2, and further

Φ(−x) = 1− Φ(x) (19.1)

for every real number x.

Example 19.7 Because of its central role in Statistics and other applications
we can �nd tables for the values of the Φ function in most probability textbooks
and spreadsheet programs like the Microsoft Windows O�ce Excel application.
See the tables on pages 735�736 of our Textbook!

If for example Z is a standard normally distributed random variable, the
�nd the probability

P (−2 < Z < 2)

Using the table on page 736 of our Textbook, we get

P (−2 < Z < 2) = Φ(2)− Φ(−2) = Φ(2)− (1− Φ(2)) = 2Φ(2)− 1 =

= 2 · 0.9772− 1 = 0.9544

where we exploited the symmetry property (19.1).
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19.4 Normal distribution

De�nition 19.8 Let m and σ be given real numbers where σ > 0. Let Z be
a standard normally distributed random variable, then the random variable

X = σZ +m

is said to have normal distribution with (m,σ)-parameters (or brie�y (m,σ)-
normal distribution).

Making use of the properties of the standard normal distribution, and the
properties of the mean and the variance (refer to Theorem 17.11) we get the
following theorem for (m,σ)-normal distributions.

Theorem 19.9

• The parameters of the distribution: m ∈ R, σ > 0.

• The mean of the distribution: E(X) = m,

• The variance of the distribution: V ar(X) = σ2.

How can we �nd the cumulative distribution function and the density func-
tion of this random variable X? Let F denote the cumulative distribution
function of X, and take a real number x arbitrarily. Then

F (x) = P (X < x) = P (σZ +m < x) = P

(
Z <

x−m
σ

)
= Φ

(
x−m
σ

)
IMPORTANT! It is vital that σ > 0, so when we divide by σ the inequality will
not change!

We get the density function of X by di�erentiating F : for every x ∈ R we
have

f(x) = F ′(x) =
1

σ
ϕ

(
x−m
σ

)
=

1√
2πσ

e−
(x−m)2

2σ2

by the Chain-Rule. This function has a global maximum at x = m, furthermore
it has points of in�ection at x = m− σ and x = m+ σ respectively. CREATE
A PICTURE!

Example 19.10 For an (m,σ)-normally distributed random variable X the
probability of being in an interval can always be expressed in terms of the
standard normal cumulative distribution function Φ.

Indeed, if a < b are arbitrarily taken real numbers, then

P (a < X < b) = F (b)− F (a) = Φ

(
b−m
σ

)
− Φ

(
a−m
σ

)
.



132 CHAPTER 19. SPECIAL CONTINUOUS DISTRIBUTIONS

For example, for a normally distributed random variable X with parameters
m = 10 and σ = 2 we have

P (7 < X < 13) = F (13)− F (7) = Φ(1.5)− Φ(−1.5) = 2Φ(1.5)− 1 =

= 2 · 0.9332− 1 = 0.8664

where we used the symmetry of Φ, and the tables on page 736 in the Textbook.

Recitation and Exercises

1. Reading: Textbook, Sections 6.1, 6.2, 6.3, 6.4, 6.6

2. Homework: Textbook, Exercises 6.2, 6.3, 6.4, 6.6, 6.7, 6.9, 6.11, 6.15, 6.17,
6.18, 6.45 and 6.46 5.66, 5.70 and 5.72

3. Review: Calculus, integration, improper integrals and in�nite series and
"Probability Exercises"



Chapter 20

Joint distributions

20.1 Joint cumulative distribution function

De�ntion 20.1 Let X and Y be random variables (not necessarily on the
same sample space). For any real numbers x and y the function

F (x, y) = P (X < x, Y < y)

is called the joint cumulative distribution function of X and Y .

The following statement comes directly from the de�nition.

Proposition 20.2 If F is a joint cumulative distribution function, then

lim
x→−∞

F (x, y) = lim
y→−∞

F (x, y) = 0

for any �xed real y and x respectively, moreover

lim
x,y→+∞

F (x, y) = 1

Similarly to the one dimensional case, we separately discuss discrete and
continuous distributions.

20.2 Discrete joint distributions

De�nition 20.3 Assume that the range of the variable X is {x1, x2, . . .}, and
the range of the variable Y is {y1, y2, . . .}. Then the joint distribution of X and
Y is given by

pik = P (X = xi, Y = yk) i = 1, 2, . . . k = 1, 2, . . .

133
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These values can be arranged in a chart:

y \ x x1 x2 x3 · · ·
y1 p11 p21 p31 · · ·
y2 p12 p22 p32 · · ·
y3 p13 p23 p33 · · ·
...

...
...

...
...

Obviously for all indices pik ≥ 0 and
∑
i

∑
k pik = 1.

Let A be a subset of the plane. By using the joint distribution, how can we
evaluate the probability P ((X,Y ) ∈ A)? Collect all values xi and yk for which
(xi, yk) ∈ A, then

P ((X,Y ) ∈ A) =
∑

(xi,yk)∈A

pik

Example 20.4 For instance, if we consider the following joint distribution

y \ x 0 1 2 3
0 0.1 0.08 0.13 0.04
1 0.04 0.2 0.08 0
2 0.03 0 0.05 0.25

then for the subset A = {(x, y) ∈ R2 : x+ y ≥ 3} we have:

P (X + Y ≥ 3) = 0.04 + 0.08 + 0.05 + 0.25 = 0.42

A natural question to ask is that based on the joint distribution, how can
we determine the distributions of X and Y alone? As we conclude from the
de�nition

pi = P (X = xi) =
∑
k

pik =
∑
k

P (X = xi, Y = yk) i = 1, 2, . . .

Namely, the probability pi = P (X = xi) can be obtained by taking the sum of
the elements in the i-th column. Therefore, the sums of columns provide the
distribution of X.

In an analogous way,

qk = P (Y = xk) =
∑
i

pik =
∑
i

P (X = xi, Y = yk) k = 1, 2, . . .

which means that the distribution of Y is obtained by taking the sums of rows.

De�nition 20.5 The distributions of X and Y are called the marginal distri-
butions of the joint distribution.
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20.3 Continuous joint distributions

De�nition 20.6 We say that X and Y are continuously distributed, if there
exists a non-negative integrable function f on the plane suvh that for all real
numbers x and y we have

F (x, y) =

∫ x

−∞

∫ y

−∞
f(t, s) ds dt

where F is the joint cumulative distribution function of the random variables
X and Y . This function f is called the joint density function of X and Y .

Clearly, if f is a joint density function, then∫ ∞
−∞

∫ ∞
−∞

f(x, y) dx dy = 1

Example 20.7 Let A be a subset of the plane. How can we �nd the probability
P ((X,Y ) ∈ A)? If f is the joint density function of X and Y , then

P ((X,Y ) ∈ A) =

∫ ∫
A

f(x, y) dy dx

For example if we consider the joint density function

f(x, y) =

{
2
3 (x+ 2y) if 0 < x < 1, 0 < y < 1
0 elsewhere

(20.1)

then for the set A = {(x, y) ∈ R2 : x < 1/2, y < 1/2} we have

P (X < 1/2, Y < 1/2) =
2

3

∫ 1/2

0

∫ 1/2

0

(x+ 2y) dy dx =
1

8

If the joint density function is given, how can we �nd the density of X or
Y alone? It can be shown that if fX denotes the density of X, then for every
point x

fX(x) =

∫ ∞
−∞

f(x, y) dy

and analogously

fY (y) =

∫ ∞
−∞

f(x, y) dx

for every point y.

De�nition 20.8 The functions fX and fY are called the marginal densities
of the joint density function.
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Example 20.9 For instance in the case of the joint density in the previous
example

fX(x) =

∫ ∞
−∞

f(x, y) dy =

{ ∫ 1

0
2
3 (x+ 2y) dy if 0 < x < 1

0 elsewhere

The marginal density of Y in a similar way

fY (y) =

{
1
3 (4y + 1) if 0 < y < 1
0 elsewhere

20.4 Independence

De�nition 20.10 Let X and Y be random variables with joint cumulative
distribution function F . Denote by FX and FY the marginal cumulative distri-
bution functions ofX and Y respectively. We say thatX and Y are independent ,
if

F (x, y) = FX(x) · FY (y)

for all real numbers x, y.

In other words we may say that X and Y are independent, if

P (X < x, Y < y) = P (X < x) · P (Y < y)

for all real numbers x, y. Now we reformulate this de�nition for the discrete and
for the continuous case.

Let X and Y be discrete random variables with joint distribution

P (X = xi, Y = yk) = pik i = 1, 2, . . . k = 1, 2, . . .

Consider the marginal distributions of X and Y :

P (X = xi) = pi i = 1, 2, . . . P (Y = yk) = qk k = 1, 2, . . .

Theorem 20.11 X and Y are independent if and only if

pik = pi · qk

for all indices i and k.
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Our theorem states that the random variables are independent if and only if
their joint distribution can be expressed as the product of the marginal distri-
butions. For instance in Example 20.4 the variables are not independent, since
for the very �rst element

0.17 · 0.35 = p1 · q1 6= p11 = 0.1 ,

VERIFY!

Now let X and Y be continuously distributed random variables with joint
density function f . Denote by fX and fY the marginal densities of X and Y
respectively.

Theorem 20.12 X and Y are independent if and only if

f(x, y) = fX(x) · fY (y)

for every real x and y.

Proof. Easily follows from the equality F (x, y) = FX(x) · FY (y). �

Example 20.13 In Example 20.1 the random variables are not independent,
since

fX(x) · fY (y) 6= f(x, y) ,

i.e. the joint density cannot be expressed as the product of the marginal densi-
ties.

However, if the joint density of X and Y is given by

f(x, y) =

{
4xy if 0 < x < 1, 0 < y < 1
0 elsewhere

then X and Y are independent. Indeed

fX(x) =

∫ ∞
−∞

f(x, y) dy =

∫ 1

0

4xy dy =

{
2x if 0 < x < 1
0 elsewhere .

and by the symmetry of f the marginal density fY has the same form with
respect to y. Thus

f(x, y) = fX(x) · fY (y)

for all real numbers x and y.
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20.5 Conditional distributions

Consider the discrete random variables X és Y with joint distribution P (X =
xi, Y = yk) = pik, where i = 1, 2, . . . and k = 1, 2, . . ..

De�nition 20.14 Suppose that for a speci�c index k we have P (Y = yk) > 0.
Then by the conditional distribution of X under the condition Y = yk we mean
the distribution

P (X = xi|Y = yk) =
P (X = xi, Y = yk)

P (Y = yk)
, i = 1, 2, . . .

ATTENTION! Verify directly that we really have de�ned a distribution!

De�nition 20.15 By the conditional expected value of X under the condition
Y = yk we mean the sum

E(X|Y = yk) =
∑
i=1

xi · P (X = xi|Y = yk)

that may consist of �nitely many or in�nitely many terms depending on the
range of X (this is why we do not indicate the upper bound of the summation).

Example 20.16 Let us examine again the joint distribution in Example 20.4.
Then P (Y = 1) = 0.32, and the conditional expected value of X under the
condition Y = 1

E(X|Y = 1) = 0 · 0.04 + 1 · 0.2 + 2 · 0.08 + 3 · 0 = 0.36

Verify this calculation!

Recitation and Exercises

1. Reading: Textbook-2, Section 3.4

2. Homework: Textbook-2, Exercises 3.39, 3.40, 3.41, 3.42, 3.43, 3.45, 3.47,
3.49, 3.50, 3.51, 3.52 and 3.53

3. Review: Calculus, integration, improper integrals and in�nite series, and
"Probability Exercises"



Chapter 21

Covariance and correlation

21.1 Mean of a sum

Tétel 21.1 If the random variables X and Y both have a mean, then so does
X + Y and

E(X + Y ) = E(X) + E(Y )

Proof. We give an outline of the proof in the discrete case, the continuous
case is analogous.

E(X + Y ) =
∑
i

∑
k

(xi + yk)P (X = xi, Y = yk)

=
∑
i

xi
∑
k

pik +
∑
k

yk
∑
i

pik

=
∑
i

xiP (X = xi) +
∑
k

ykP (Y = yk) = E(X) + E(Y ) �

This theorem remains true for a sum with a �nite number of terms (use
induction!).

Example 21.2 Suppose that on n pieces of cards we wrote the integers
1, . . . , n, and then placed them in a hat. We choose m pieces of cards from the
hat at random, with replacement. Let X denote the sum of the integers. Find
E(X).

The distribution of X in that problem is hard to �nd. Give it a try!

Denote by X1, . . . , Xm the numbers selected. In view of the selection with
replacement, each Xk is identically distributed, namely:

P (Xk = i) =
1

n
i = 1, . . . , n

139
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This means that for every k

E(Xk) =

n∑
i=1

i · 1

n
=
n(n+ 1)

2
· 1

n
=
n+ 1

2
.

On the other hand, clearly X = X1 + . . .+Xm, and therefore

E(X) = E(X1) + . . .+ E(Xm) = m · n+ 1

2

Thus E(X) can be found without even knowing the distribution of X!

21.2 Mean of a product

If the discrete random variables X and Y , then

E(XY ) =
∑
i

∑
k

xiyk · pik

where the range of X is {x1, x2, . . .}, and the range of Y is {y1, y2, . . .} respec-
tively, and pik denotes their joint distribution.

In a conpletely similar way, if X and Y continuously distributed, both have
a mean, and their joint density function is f , then

E(XY ) =

∫ ∞
−∞

∫ ∞
−∞

xy · f(x, y) dx dy

Theorem 21.3 If X and Y are independent, then

E(XY ) = E(X) · E(Y )

Proof. We just focus on the continuous case, the discrete case can be treated
similarly.

E(XY ) =

∫ ∞
−∞

∫ ∞
−∞

xy · f(x, y) dx dy =

∫ ∞
−∞

∫ ∞
−∞

xy · fX(x) · fY (y) dx dy

=

∫ ∞
−∞

xfX(x) dx ·
∫ ∞
−∞

yfY (y) dy = E(X) · E(Y )

since the independence implies that the joint density is the product of the
marginal densities, i.e. f(x, y) = fX(x) · fY (y). �
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21.3 Variance of a sum

Theorem 21.4 Assume that X and Y are independent, and they both have a
variance. Then

V ar(X + Y ) = V ar(X) + V ar(Y )

The statement can be extended to any �nite number of terms.

Proof. Exploit our theorem about the mean of the product, then we get:

V ar(X + Y ) = E((X + Y − E(X + Y ))2)

= E((X − E(X))2) + E((Y − E(Y ))2)

+2E((X − E(X))(Y − E(Y )))

= V ar(X) + V ar(Y ) + 2(E(XY )− E(X)E(Y ))

= V ar(X) + V ar(Y ) . �

Example 21.5 Why do we think that by repeatedly performing an experiment
and taking the average of the results we can expect a more accurate result?

Let us suppose that for determining an unknown quantity m we perform n
observations, and the results are the random variables X1, . . . , Xn. We assume
that the variables are independent and identically distributed with

E(Xk) = m, D(Xk) = σ, k = 1, 2, . . . , n .

The assumption that all variables have the same distribution means that the
observations (measurments) are carried out in the same circumstances. Then σ
is interpreted as the expected error. Take the arithmetic average of our results,
i.e. introduce the random variable

Yn =
X1 + . . .+Xn

n

Then clearly E(Yn) = m, moreover, according to our theorem above

V ar(Yn) = V ar

(
1

n
(X1 + . . .+Xn)

)
=

1

n2
n · σ2 =

σ2

n
.

as a consequence of independence. Thus, for the standard deviation of Yn we
obtain:

D(Yn) =
σ√
n

for which D(Yn)→ 0 as n→∞. Hence, the expected error tends to zero, when
n approaches in�nity.
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21.4 Covariance and correlation

The following concepts are used for measuring the degree of dependence of
random variables.

De�nition 21.6 The covariance of random variables X and Y is de�ned by

Cov(X,Y ) = E((X − E(X)) · (Y − E(Y )))

and their correlation coe�cient is given by

Corr(X,Y ) =
Cov(X,Y )

D(X) ·D(Y )

As it is easy to see

Cov(X,Y ) = E(XY −E(X)Y −E(Y )X+E(X)E(Y )) = E(XY )−E(X)E(Y ) ,

and most of the time, this simpler expression is used to evaluate the covariance.

The covariance is NOT an absolute measurment of the in dependence, since
for any α 6= 0 we have

Cov(αX, Y ) = αCov(X,Y )

so it dependends on the dimensions . Just think of the case when X and Y are
costs given in Euro, but if we convert them to Forint, then their covariance will
change to approximately 3402 times higher. However, the correlation coe�cient
is independent of the dimension, since for any real numbers α 6= 0 and β we
have:

Corr(αX + β, αY + β) = Corr(X,Y )

which means that the correlation is independent of linear transformations. AT-
TENTION! Verify this equality directly by the de�nition!

Theorem 21.7

1. −1 ≤ Corr(X,Y ) ≤ 1

2. If X and Y are independent, then Cov(X,Y ) = 0

Proof. For proving the �rst statement, take a real number t ∈ R arbitrarily,
and consider the random variable

W = [X − E(X) + t(Y − E(Y ))]2
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Since W is nonnegative, so is its mean. This means that

E(W ) = E((X − E(X))2) + 2tCov(X,Y ) + t2E((Y − E(Y ))2) ≥ 0

for every real number t. This expression is quadratic with respect to t, and
therefore it can only nonnegative, if its discriminant is nonpositive, that is:

4Cov(X,Y )2 − 4E((X − E(X))2)E((Y − E(Y ))2) ≤ 0 .

Rearranging the terms, and taking the square root of both sides, we get:

|Cov(X,Y )| ≤ D(X)D(Y )

The second statement is an immediate consequence of Theorem 21.3. �

Example 21.8 ATTENTION! The example below shows that the converse
of the second statement of our theorem is not true! Toss a coin twice in a row,
and introduce the random variables:

Xk =

{
0 if toss k is a Head
1 if toss k is a Tail

(k = 1, 2). Consider the variables Y1 = X1 +X2 and Y2 = X1−X2. Then their
joint distribution is:

Y2 \ Y1 0 1 2
−1 0 0.25 0

0 0.25 0 0.25
1 0 0.25 0

By examining the joint distribution, we see that Y1 and Y2 are not independent,
but we can easily calculate that Cov(Y1, Y2) = 0

21.5 Theorem of Total Expectation

Consider the discrete random variables X and Y that have a joint distribution
P (X = xi, Y = yk) = pik, and P (Y = yk) > 0 for all indices i = 1, 2, . . . and
k = 1, 2 . . ..

De�nition 21.9 Create the conditional expected values of X under the con-
ditions Y = yk that is:

mk = E(X|Y = yk) =
∑
i=1

xiP (X = xi|Y = yk)

for every k = 1, 2 . . .. This sequence is called the conditional expectation of X
with respect to the variable Y . Its notation is E(X|Y ).



144 CHAPTER 21. COVARIANCE AND CORRELATION

Observe that this way we have de�ned a random variable, namely

E(X|Y ) = mk , ha Y = yk , k = 1, 2, . . .

Below we determine the mean of this random variable. This result can be
regarded as the generalization of Theorem of Total Probability.

Tétel 21.10 (Theorem of Total Expectation) E(E(X|Y )) = E(X).

Proof. Indeed,

E(E(X|Y )) =
∑
k=1

mkP (Y = yk) =
∑
k=1

∑
i=1

xiP (X = xi|Y = yk)P (Y = yk)

=
∑
i=1

xi
∑
k=1

P (X = xi, Y = yk) =
∑
i=1

xiP (X = xi) = E(X)

since, in the second line, we obtain precisely the marginal distribution of X. �

ATTENTION! Why can we interchange the sums in the second line?

Example 21.11 In some situations it is easier to �nd E(X) by our theorem
than by the direct approach. The number of calls received by a call center on
a given day has Poisson distribution with a parameter λ > 0. Every call is a
wrong number with a given probability p > 0, independently from each other.
Find the expected value of the wrong number calls on that day.

Let X denote the number of wrong calls, and Y the total number of calls.
It is clear that for any �xed n ∈ N under the condition Y = n we face the
Bernoulli-experiment. Therefore,

P (X = k|Y = n) =

(
n

k

)
pk(1− p)n−k if n ≥ k

while P (X = k|Y = n) = 0, if n < k. Hence, the conditional expected value is
given by

mn = E(X|Y = n) = np , n = 1, 2, . . .

Making use of the Theorem of Total Expectation, we obtain

E(X) = E(E(X|Y )) =

∞∑
n=1

np
λn

n!
e−λ = λp

ATTENTION! Find E(X) directly by using the distribution of X as well!

Recitation and Exercises

1. Reading: Textbook-2, Sections 4.1, 4.2 and 4.3.

2. Homework: Textbook-2, Exercises 4.23, 4.24, 4.52, 4.59, 4.60, 4.64, 4.70,
4.98.

3. Review: "Probability Exercises"
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Sums of random variables

22.1 Sums of discrete variables

Assume that X and Y are independent variables, and both have Poisson-
distribution, with parameters λ > 0 and µ > 0 respectively. Find the dis-
tribution of X + Y . Then for any �xed integer k

P (X + Y = k) =

k∑
i=0

P (X = i, Y = k − i) =

k∑
i=0

P (X = i) · P (Y = k − i)

=

k∑
i=0

λi

i!
e−λ · µk−i

(k − i)!
e−µ =

e−(λ+µ)

k!

k∑
i=0

(
k

i

)
λiµk−i

=
(λ+ µ)k

k!
e−(λ+µ)

by the independence. Thus, X+Y has Poisson-distribution with the parameter
λ+ µ.

Using induction, this result can be extended to any �nite number of terms.

Tétel 22.1 Assume that X1, . . . , Xn are independent variables, and have
Poisson-distribution with parameters λ1, . . . , λn respectively. Then the random
variable

Yn = X1 + . . .+Xn

has Poisson-distribution with parameter λ1 + . . .+ λn.

22.2 Sums of continuous variables

Let X and Y be independent, continuously distributed random variables with
density functions f and g respectively. Denote by F and G their cumulative

145
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distribution functions. Let H denote the cumulative distribution function of
X + Y . To �nd H pick a real number x ∈ R. Then (sketch a picture!):

H(x) =

∫ ∫
t+s<x

f(s)g(t) ds ds =

∫ ∞
−∞

∫ x−s

−∞
f(s)g(t) dt ds

=

∫ ∞
−∞

f(s)

(∫ x−s

−∞
g(t) dt

)
ds =

∫ ∞
−∞

f(s)G(x− s) ds .

By taking the derivative of H, we get the density function h of X + Y

h(x) =

∫ ∞
−∞

f(s)g(x− s) ds

This formula is called the convolution integral of f and g.

ATTENTION! Di�erentiating the integral is not straightforward! Examine
this rule in some simple cases!

Example 22.2 Suppose now that X and Y are independent random variables
that are uniformly distributed on the interval [0, 1]. Then (X,Y ) is uniformly
distributed on the unit square of the plane. By sketching a picture, show that
if h stands for the density function of X + Y , then

h(x) =

 x if 0 < x < 1
2− x ha 1 < x < 2
0 elsewhere.

Example 22.3 Let X and Y be independent, exponentially distributed ran-
dom variables, both with parameter λ > 0. Let h denote the density function
of X+Y . If f denotes the density function of the exponential distribution with
parameter λ, then the convolution integral is:

h(x) =

∫ ∞
−∞

f(s)f(x− s) ds

Behind the integral sign f is zero on the negative part of the real line. Therefore,
the integrand is not zero if and only if s > 0 and x − s > 0, that is 0 < s < x.
Thus,

h(x) =

∫ x

0

λ2e−λse−λ(x−s) ds = λ2
∫ x

0

e−λx ds = λ2xe−λx

for any given x > 0, since the last integrand does not depend on s.

By using induction, we can extend the above result to any �nite number of
terms.

Theorem 22.4 Assume that X1, . . . , Xn are independent, exponentially dis-
tributed random variables with the same parameter λ > 0. Let hn denote the
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density function of the random variable

Yn = X1 + . . .+Xn

Then

hn(x) =
λn

(n− 1)!
xn−1e−λx

if x > 0, and hn(x) = 0, if x ≤ 0.

22.3 The Poisson process

In this section we describe a deeper relationship between the exponential and
the Poisson distributions.

Consider the random variables T1, T2, . . . which mean waiting times between
consecutive "occurances".

We can think of times between successive vehicles on a highway, times be-
tween incoming claims received by an insurance company, waiting times between
consecutive clients at a customer service desk, time intervals between incoming
calls to a call center, etc.

Assume that T1, T2, . . . independent, exponentially distributed random vari-
ables with identical parameter λ > 0. The smaller the value of λ, the longer are
the expected waiting times (check the expectation!). The memoryless property
of the exponential distribution means that the waiting time is independent on
how long we have been waiting before.

Set S0 = 0 denote by
Sn = T1 + . . .+ Tn

the total waiting time until the n-th occurance. For a given t > 0 the event

{Sn ≤ t}

means that the n-th occurance arrives before t. This means that the number of
occurances in the time interval [0, t] is at least n.

Denote by N(t) the number of occurances in the time interval [0, t], then the
events

{N(t) ≥ n} = {Sn ≤ t}

coincide. For every t > 0 we de�ned a random variableN(t), this correspondence
is called the Poisson process.

How can we �nd the distribution of N(t) for a �xed t > 0? The event that
there are exactly n occurances in the time interval [0, t] is given by

{N(t) = n} = {Sn ≤ t} ∩ {Sn+1 ≤ t} = {Sn ≤ t < Sn+1} .
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Clearly {Sn+1 ≤ t} ⊂ {Sn ≤ t}, and this implies

P (N(t) = n) = P (Sn ≤ t)− P (Sn+1 ≤ t) .

Let hn be the density of Sn, and hn+1 be the density of Sn+1. Since T1, T2, . . .
are independent, exponentially distributed random variables with the same pa-
rameter λ, then in view of Theorem 22.4 of the previous section we get

hn(x) =
λn

(n− 1)!
xn−1e−λx and hn+1(x) =

λn+1

n!
xne−λx

for every x > 0. Therefore

P (N(t) = n) = P (Sn ≤ t)− P (Sn+1 ≤ t) =

∫ t

0

hn(x) dx−
∫ t

0

hn+1(x) dx .

Evaluate the �rst integral on the righ-hand side by integration by parts:∫ t

0

hn(x) dx =
λn

(n− 1)!

∫ t

0

xn−1e−λx dx

=
λn

(n− 1)!

[
xn

n
e−λx

]t
0

+
λn

(n− 1)!

∫ t

0

xn

n
λe−λx dx

=
(λt)n

n!
e−λt +

λn+1

n!

∫ t

0

xne−λx dx .

We can recognize that in the last integral we pecisely have hn+1. Hence,

P (N(t) = n) =
(λt)n

n!
e−λt

Theorem 22.5 In the Poisson process the number of occurances in the time

interval [0, t] is a Poisson random variable with parameter λt.

22.4 Sum of standard normal distributions

Let Z1 and Z2 be independent, standard normally distributed random variables,
and �nd the distribution of their sum:

Y = Z1 + Z2

Now, the convolution integral is

h(x) =

∫ ∞
−∞

ϕ(s)ϕ(x− s) ds
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where h is the density function of Y . Then

h(x) =
1

2π

∫ ∞
−∞

e−s
2/2e−(x−s)

2/2 ds =
1

2π
e−

x2

2

∫ ∞
−∞

exs−s
2

ds

=
1

2π
e−

x2

2

∫ ∞
−∞

e−(s−x/2)
2

ex
2/4 ds =

1

2π
e−

x2

4

∫ ∞
−∞

e−(s−x/2)
2

ds

The last integral is precisely the Gauss integral, whose value is
√
π, thus

h(x) =
1

2
√
π
e−

x2

4 −∞ < x <∞

This is exactly the density function of the normal distribution with parameters
m = 0 and σ =

√
2.

Using completely analogous arguments, we can formulate the following re-
sult.

Theorem 22.6 Let Z1, . . . , Zn be independent, standard normally distributed
random variables. Then Y = Z1 + . . . + Zn is a normally distributed random
variable with parameters m = 0 and σ =

√
n.

22.5 Central Limit Theorem

Imagine the following experiment. To determine an unknown quantity m we
carry out n independent observations (measurments). To approximate the un-
known quantity we use the arithmetic mean (average) of the n outcomes.

Let us denote the outcomes by X1, . . . , Xn and assume that they are inde-
pendent and identically distributed random variables with

E(Xk) = m, D(Xk) = σ, k = 1, 2, . . . , n

(Identical distribution means that the observations are performed in identical
circumstances.) For the stantardized average let us introduce the following
notation:

Yn =
1
n (X1 + . . .+Xn)−m

σ/
√
n

Then Yn has a mean of 0 and standard deviation 1.

It was the amazing discovery of the Russian mathematician Alexandr Lya-
punov and the mathematics of his time (early 20-th century) that the distribu-
tion of this variable Yn converges to the standard normal distribution.

Tétel 22.7 (Central Limit Theorem) Under the above conditions let Fn
denote the cumulative distribution function of Yn. Then for every x ∈ R we
have

lim
n→∞

Fn(x) = Φ(x) .
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Example 22.8 On a given day the number of visitors to a local convenience
store is 100. Every visitor buys something with probability p = 0.2 (indepen-
dently from each other). Find the probability that on that given day the the
number of purchases will be between 15 and 25.

Let X be the number of purchases. Then X is binomially distributed
(Bernoulli-experiment!) with parameters n = 100 and p = 0.2. For each visitor
introduce the following notation:

Xk =

{
0 if does not buy anything
1 if buys something

then X = X1 + . . .+X100 and the terms are independent random variables. It
is easy to see that for each k we have E(Xk) = 0.2 and V ar(Xk) = 0.16, hence
D(Xk) = 0.4. Therefore,

P (15 < X < 25) = P

(
−5

4
<
X − 20

4
<

5

4

)
= P

(
−5

4
<

1
100 (X1 + . . .+X100)− 0.2

0.4/10
<

5

4

)
Making use of the Central Limit Theorem

P (15 < X < 25) ≈ Φ(1.25)− Φ(−1.25)

= 2Φ(1.25)− 1 = 0.7888

by looking up the number in the table for the standard normal distribution, see
Textbook-2, page 736 (Appendix A).

Recitation and Exercises

1. Reading: Textbook-2, Sections 6.5 and 6.6.

2. Homework: Textbook-2, Exercises 6.24, 6.26, 6.29, 6.34 and 6.38.

3. Review: "Probability Exercises"
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Law of Large Numbers

23.1 Chebyshev's Theorem

So far we have had to determine probabilities of the form

P (a < X < b)

This is easy to do if the distribution of the random variable X is known. In
particular, in the case of a discrete variable we get

P (a < X < b) =
∑

a<xk<b

P (X = xk)

while for a continuously distributed variable

P (a < X < b) =

∫ b

a

f(x) dx

where f is the density function of X. However, there are situations when this
procedure cannot be completed. Namely, if

1. either the distribution of X is not known,

2. or the distribution of X is known, but too complicated to use.

In cases like these, we can be satis�ed with an appropriate estimate on the
given probability. This estimate is provided by Chebyshev's Theorem. Consider
a random variable X that has a mean and a variance.

Theorem 23.1 (Chebyshev's Theorem) The mean of X is E(X) = m and
its standard deviation is D(X) = σ. Then

P (|X −m| < k · σ) ≥ 1− 1

k2

151
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for any k > 0.

Proof. We present the proof for a continuously distributed random variable.
In the discrete case the proof can be carried out in a completely analogous way.
Let f be the density function of X, then

σ2 =

∫ ∞
−∞

(x−m)2f(x) dx

If k > 0 is given, then the value of the integral on the right-hand side will not
increase if we skip the interval [m− kσ,m+ kσ]. In fact:

σ2 ≥
∫ m−kσ

−∞
(x−m)2f(x) dx+

∫ ∞
m+kσ

(x−m)2f(x) dx (23.1)

since the integrand is nonnegative. On the other hand, at every point x of the
interval (−∞,m− kσ] we have (x−m)2 ≥ k2σ2, and hence∫ m−kσ

−∞
(x−m)2f(x) dx ≥

∫ m−kσ

−∞
k2σ2f(x) dx ≥ k2σ2P (X ≤ m− kσ) .

Completely similarly, at every point x of the interval [m + kσ,∞) we get (x −
m)2 ≥ k2σ2, and consequently∫ ∞

m+kσ

(x−m)2f(x) dx ≥
∫ ∞
m+kσ

k2σ2f(x) dx ≥ k2σ2P (X ≥ m+ kσ) .

If we combine the latter two inequalities with the inequality (23.1), then we
obtain

σ2 ≥ k2σ2P (X ≤ m− kσ) + k2σ2P (X ≥ m+ kσ) .

Dividing both sides with the positive expression k2σ2 we get

1

k2
≥ P (X ≤ m− kσ) + P (X ≥ m+ kσ) = P (|X −m| ≥ kσ) .

By converting to the complement event, the proof is completed. �

Note that the theorem gives an irrelevant result if k ≤ 1, so we apply the
inequality only for k > 1.

Example 23.2 For instance, if the distribution of the random variable X is
not known, but its mean E(X) = 8 and its standard deviation D(X) = 2 are
given, then

P (2 < X < 14) ≥ 1− 1

9
≈ 0.8889

since in this case k = 3.
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23.2 Chebyshev's Theorem in equivalent form

Sometimes it is more covenient to use Csebishev's Theorem in the following
form:

P (|X − E(X)| < ε) ≥ 1− V ar(X)

ε2

where ε > 0. Indeed, this inequality is equivalent to our theorem by setting
k ·D(X) = ε > 0, and then

1

k2
=
V ar(X)

ε2

Let us formulate the theorem in the following equivalent form.

Theorem 23.3 Consider a random variable X with a mean E(X) = m, and
standard deviation D(X) = σ. Then for every �xed ε > 0 we have

P (|X −m| < ε) ≥ 1− σ2

ε2
(23.2)

Example 23.4 On a given day a call center receives 2000 incoming calls.
Every call is a wrong number with probability 0.002 (independently from each
other). Find the probability that on that given day there are at most 8 wrong
number calls.

Let X denote the number of wrong number calls. Clearly X is binomially
distributed (Bernoulli experiment!), with parameters n = 2000 and p = 0.002.
The solution to our problem is:

P (X ≤ 8) =

8∑
k=0

(
2000

k

)
0.002k · 0.9982000−k

which is not easy to evaluate (although the distribution is known).

However, we can give a reasonable estimate by using Chebyshev's Theorem.
Now m = 4 and σ2 = 4 · 0.998 ≈ 4, and therefore

P (X ≤ 8) = P (|X − 4| < 5) ≥ 1− 4

25
= 0.84
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23.3 Poisson approximation

Example 23.5 In a large hospital with 2000 beds, the probability that a
patient needs intensive care is 0.002 on any given day (independently from each
other). The director wants to establish a new emergency ward so that if a
patient needs intensive care, must get a bed with probability of at least 0.99.
What should be the size of the emergency ward with minimal cost (smallest
number of beds)?

Let N denote the number of beds in the emergency ward, and X be the
number of patients who need intensive care on a given day. Then X is clearly
binomially distributed (Bernoulli experiment!) with a mean of m = 4 and
variance σ2 = 4 · 0.998 ≈ 4. Then the inequality

P (X ≤ N) =

N∑
k=0

(
2000

k

)
0.002k0.9982000−k ≥ 0.99

has to be solved for the smallest N (which means the lowest cost).

This is the situation when the distribution of X is known, but too compli-
cated to use. Apply Chebyshev's Theorem instead:

P (|X − 4| < ε) ≥ 1− 4

ε2
= 0.99

The lowest solution is ε = 20 and therefore N = 23 is obtained for the optimal
smallest number of beds in the new emergency ward.

Chebyshev's Theorem is true for any distribution, so we cannot expect a
very sharp estimate. We can get a much more accurate solution if we apply the
Poisson approximation. The theorem on how to approximate the binomial dis-
tribution by the Poisson distribution is discussed in Section 18.5. In particular,
in the present example:

N∑
k=0

(
2000

k

)
0.002k0.9982000−k ≈

N∑
k=0

4k

k!
e−4

since "n = 2000 is large enough, and p = 0.002 su�ciently small", moreover
np = 4. When we look at the Poisson tables (see Textbook-2, page 732, Ap-
pendix A) we can see that the sum on the right-hand side exceeds 0.99 at
N = 9. Based on this approximation we claim that even an emergency ward
of size N = 9 ful�lls the criteria. (Examining how sharp this approximation is,
goes beyond the scope of this book.)

23.4 Law of Large Numbers

We carry out an experiment n times in a row (independently from each other)
and each time we observe whether or not a given event A occurs (Bernoulli
experiment).
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Suppose that the probability of the event A is P (A) = p (where 0 ≤ p ≤ 1)
and let Xn be the number of experiments in which A occurs. The quotient
Xn/n means the relative frequency of the event A.

We want to examine whether the relative frequency converges to the real
value of the probability when the number of experiments is increased that is
n→∞?

From theoretical point of view, this question is of fundamental importance.
If the answer is a�rmative, it justi�es our axiomatic approach to probability.
Indeed, within the framework of our theory that we have developed from the
axioms, we are able to derive a theorem that can directly be veri�ed in reality.
In other words, our axioms are set properly, and their consequences re�ect real
phenomena.

As is well known, Xn is binomially distributed with parameters n and p
paraméterekkel. Pick a number ε > 0 and apply Chebyshev's Theorem:

P

(∣∣∣∣Xn

n
− p
∣∣∣∣ ≥ ε) = P (|Xn − np| ≥ nε)

Since E(Xn) = np and V ar(Xn) = np(1− p), we get

P (|Xn − np| ≥ nε) ≤
np(1− p)
n2ε2

We have p(1− p) ≤ 1/4 for any real number p, so from here

P

(∣∣∣∣Xn

n
− p
∣∣∣∣ ≥ ε) ≤ 1

4nε2
→ 0

if n→∞. We formulate this result in the theorem below.

Theorem 23.6 (Bernoulli's Law of Large Numbers)

lim
n→∞

P

(∣∣∣∣Xn

n
− p
∣∣∣∣ < ε

)
= 1

for every ε > 0.

This theorem is sometimes called "Bernoulli's Weak Law of Large Numbers"
to distinguish it from more advanced and complicated "Strong Law" results.

Example 23.7 A consulting agency makes a forecast of the support of a
political party before the upcoming parliamentary election. They interview
potential voters about their preferences. The agency wants to be 90% sure that
their prediction should be within the 1% margin (i.e. the di�erence between the
predicted ratio and real ratio is less than 1%). How many people have to be
interviewed?



156 CHAPTER 23. LAW OF LARGE NUMBERS

Let 0 < p < 1 denote the unknown real ratio (the real support of the party),
this will be estimated by the relative frequency. Assume that the size of sample
(number of interviews) is n (yet to be determined) and Xn is the number of
voters who support the party. Then the anticipated support ratio is Xn/n.

This is a Bernoulli experiment, therefore Xn is binomially distributed with
E(Xn) = np and V ar(Xn) = np(1− p). Then the following inequality holds:

P

(∣∣∣∣Xn

n
− p
∣∣∣∣ ≤ 0.01

)
≥ 1− 1

4n · 10−4

If the agency wants to guarantee this accuracy with at least 90% certainty, then

1− 1

4n · 10−4
= 0.90

from which we have n = 25 000.

In reality, using advanced statistical methods, even a smaller sample might
be su�cient. However, in most situations it is hard to guarantee that the set
of interviewed voters is homogeneous and representative (in the sense that the
sample ratio re�ects the ratio for the whole voting society).

Under the conditions of Theorem 23.6 the following stronger statement can
also be proven.

Theorem 23.8 Under the conditions of Theorem 23.6 we have

P

(
lim
n→∞

Xn

n
= p

)
= 1

Intuitively, Theorem 23.6 claims that very likely the relative frequency gets
close to the probability p as n increases. However, it does not exclude that large
di�erences can occur beyond any arbitrarily large index n. It just says that such
large di�erences are unlikely. Theorem 23.8 tells us however, that such large
di�erences come with probability zero. (The proof is due to Lyapunov and to
Kolmogorov in a more general form in the 30's of the last century.)

Recitation and Exercises

1. Reading: Textbook-2, Section 4.4.

2. Homework: Textbook-2, Exercises 4.75, 4.76, 4.77, 4.78 and 4.91.

3. Review: "Probability Exercises"
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Chapter 25

Vector spaces and subspaces

25.1 The vector space Rn

Let n be a given integer. The set Rn is de�ned as the set of all n-tuples of real
numbers that is:

Rn =

x =

 x1
...
xn

 : x1, . . . , xn ∈ R


The elements of this set are called vectors, their components are called coor-
dinates. In a geometric interpretation this set for n = 2 means the plane, for
n = 3 it means the three dimensional space.

In the sequel, vectors are denoted by lower case latin letters, real numbers
(or scalars) are denoted by lower case greek letters.

For the vectors of the space Rn we introduce the following operations:

Sums of vectors

x =

 x1
...
xn

 and y =

 y1
...
yn

 then x+ y =

 x1 + y1
...

xn + yn

 ∈ Rn

Vector multiplied by a scalar

α ∈ R and x =

 x1
...
xn

 then αx =

 αx1
...

αxn

 ∈ Rn
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The set Rn equipped with these operations is called a vector space.

De�nition 25.1 Consider the vectors a1, . . . , ak in the vector space, and let
α1, . . . , αk be arbitrary real numbers (scalars). The vector

α1a1 + . . .+ αkak

is called a linear combination of the vectors a1, . . . , ak.

Example 25.2 For instance, if

a1 =

 2
−1

3

 and a2 =

 3
0
4

 further α1 = 3 and α2 = −2

then

α1a1 + α2a2 =

 0
−3

1



25.2 Subspaces

De�nition 25.3 A subset M of the vector space Rn is called a subspace, if

• for every x, y ∈M we have x+ y ∈M , and

• for every x ∈M and α ∈ R we have αx ∈M .

It is clear from the de�nition that a subspace always contains the zero vector
0. The smallest subspace is {0}, the largest subspace is the whole vector space.

Theorem 25.4 If M is a subspace, then for all vectors a1, . . . , ak ∈ M and
all scalars α1, . . . , αk ∈ R we have

α1a1 + . . .+ αkak ∈M
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In other words: a subspace is closed for linear combinations. It is easy to
see that in the vector space R3 the straight lines and planes that pass through
the origin are all subspaces.

Exampla 25.5 Consider the following subset in the vector space Rn

M =

x =

 x1
...
xn

 ∈ Rn : x1 + x2 = 0


Verify that M is a subspace.

Indeed, if x, y ∈ M , then x1 + x2 = 0 and y1 + y2 = 0, and hence, for the
�rst two coordinates of x + y we have (x1 + y1) + (x2 + y2) = 0. This implies
x+ y ∈M .

Similarly, if x ∈ M and α ∈ R, then equality x1 + x2 = 0 implies that
α(x1 + x2) = 0, therefore, αx ∈M .

It is easily visible that for n = 3 the subspace M above is a plane that is
perpendicular to the xy-plane and their intersection is the straight line with the
angle of −45◦ degree. CREATE A PICTURE!

On the other hand, if in the de�nition of M the sum x1 + x2 were set to be
any number di�erent zero, then M would not be a subspace. In that situation
the addition and the scalar multiplication may go out of M .

Theorem 25.6 The intersection of subspaces is again a subspace.

Proof. It is enough to prove the statement for two subspaces. The proof
for any number of subspaces can be carried out analogously.

Let L and M be subspaces. If x, y ∈ L∩M , then x+ y ∈ L and x+ y ∈M ,
because both are subspaces. Thus, x+ y ∈ L ∩M .

Similarly, if x ∈ L ∩M and α ∈ R, then αx ∈ L and αx ∈M , because both
are subspaces. Consequently, αx ∈ L ∩M . �

25.3 Generated subspace

In view of Theorem 25.6 we can speak about the smallest subspace containing
given vectors. This is formulated in the following de�nition.

De�nition 25.7 The smallest subspace spanned by the vectors a1, . . . , ak is
denoted by

lin{a1, . . . , ak}
and it is de�ned as the intersection of all subspaces containing these vectors. It
is called the generated (or spanned) subspace.
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A subspace contains all linear combinations of its vectors. Since all linear
combinations already form a subspace, we come to the following theorem.

Theorem 25.8 The subspace generated by the vectors a1, . . . , ak is the set of
all linear combinations

α1a1 + . . .+ αkak

where α1, . . . , αk ∈ R.

Example 25.9 For instance, in the vector space R3 consider the vectors

a1 =

 1
0
0

 amd a2 =

 0
1
0


then

lin{a1, a2} =

x =

 x1
x2
x3

 ∈ R3 : x3 = 0


i.e. the set of vectors whose third coordinate is zero. Please verify that this set
is really a subspace!

25.4 Linear independence

De�nition 25.10 In the vector space Rn the vectors a1, . . . , ak are said to be
linearly independent , if the equality

α1a1 + . . .+ αkak = 0

implies α1 = . . . = αk = 0.

In the opposite situation the vectors are called linearly dependent .

Linear independence is one of the most profound concept of algebra, it for-
mulates that a linear combination is zero ONLY if all coe�cients are zero.

ATTENTION! The de�nition does not say that if all coe�cients are zero,
then the linear combination is also zero. This is obvious! The implication is the
opposite.

In a collection of linearly independent vectors none of them can be expressed
as the linear combination of the others. This stated in the following theorem.

Theorem 25.11 The vectors a1, . . . , ak are linearly dependent if and only if
one of them can be expressed as the linear combination of the others.
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Proof. If one vector, say a1 can be expressed as the linear combination of
the others, then

a1 = α2a2 + . . .+ αkak .

Rearrange the equality, then we get

−a1 + α2a2 + . . .+ αkak = 0 .

This shows that their linear combination is zero, although the �rst coe�cient is
not zero. Hence, the vectors cannot be linearly independent.

Conversely, assume that the vectors are linearly dependent. Then there
exists a linear combination

α1a1 + . . .+ αkak = 0 ,

where not all coe�cients are zero, say α1 6= 0. Then

a1 = −α2

α1
a2 − . . .−

αk
α1
ak ,

that means a1 can be expressed as the linear combination of the others. �

Example 25.12 Consider the following vectors in R3

a1 =

 2
−1

3

 a2 =

 3
0
4

 a3 =

 1
−2

2


and �nd out if they are independent.

Easy calculation shows that a3 = 2a1 − a2, so the vectors are dependent.

The statements below follow easily from the de�nition. Verify them!

Theorem 25.13 Consider the vectors a1, . . . , ak in the vector space Rn.

• If the vectors are linearly independent, then so is any subset of them.

• If the zero vector is an element of the collection, then they are linearly
dependent.

• If there are two identical vectors in the cellection, then they are dependent.

• If the vectors are linearly dependent, then any extension is dependent.

Proof. Just hints are given, detailed proof is a homework.

• Consider any linear combination of a subset, and insert the missing vectors
with zero coe�cients.



164 CHAPTER 25. VECTOR SPACES AND SUBSPACES

• Consider the linear combination in which the zero vector comes with the
coe�cient 1, and all other vectors with 0.

• Consider the linear combination in which the identical vectors come with
the coe�cients +1 and −1 respectively, and all other vectors with 0.

• Consider a linear combination which is zero, but not all coe�cients are
zero, and insert the vectors in the extension with zero coe�cients.

Example 25.14 Suppose the vectors a, b and c are linearly independent. Is
it true that the vectors a+ b, b+ c, c+ a are linearly independent as well?

Take a linear combination, and make it equal zero:

α1(a+ b) + α2(b+ c) + α3(c+ a) = 0 .

Rearrange the equality this way:

(α1 + α3)a+ (α1 + α2)b+ (α2 + α3)c = 0

Independence of a1, a2, a3 implies that

α1 + α3 = 0 α1 + α2 = 0 α2 + α3 = 0

The only solution of this system is α1 = α2 = α3 = 0. Thus, the vectors a+ b,
b+ c és c+ a are linearly independent.

Recitation and Exercises

1. Reading: Textbook-1: Sections 12.1, 12.2, 12.3 and 14.1.

2. Homework: Textbook-1, Section 14, Exercises 1, 2, 3, 4, 5 and 7.

3. Review: "Linear Algebra Exercises
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Linear independence and

basis

26.1 Generating system

De�nition 26.1 In the vector space Rn a collection of vectors a1, . . . , ak is
said to be a generating system, if

lin{a1, . . . , ak} = Rn ,

i.e. all vectors of the space can be expressed as the linear combination of the
given vectors.

Example 26.2 Consider the following vectors in the vector space R3

a1 =

 1
0
0

 a2 =

 0
1
0

 a3 =

 3
−2

0


and decide whether or not they form a generating system.

We can easily see that the whole space is not spanned by these vectors, since
no vector with a nonzero third coordinate belongs to the span. These vectors
are not independent either, because a3 = 3a1 − 2a2.

On the other hand, the following set of vectors

e1 =

 1
0
0

 e2 =

 0
1
0

 e3 =

 0
0
1
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forms a generating system, since every vector x can be expressed this way:

x = x1e1 + x2e2 + x3e3 ,

where x1, x2, x3 are the coordinates of x. It is easy to check that these vectors
are linearly independent as well.

Completely analogously, we can de�ne the generating system of a subspace
M in the vector space Rn.

De�nition 26.3 The vectors a1, . . . , ak form a generating system of the sub-
space M (or they span the subspace M), if every vector in M can be given as
the linear combination of the vectors a1, . . . , ak.

26.2 Basis

De�nition 26.4 A collection of vectors a1, . . . , ak is called a basis of the
vector space Rn, if

• they are linearly independent,

• they form a generating system.

Quite analogously, we can de�ne the basis of a subspace.

Example 26.5 As we have seen above, in the vector space R3 the vectors

e1 =

 1
0
0

 e2 =

 0
1
0

 e3 =

 0
0
1


form a basis, as they are linearly independent and they span the whole space.
Similarly, the vectors

a1 =

 1
1
1

 a2 =

 0
1
1

 a3 =

 0
0
1


form a basis as well. (VERIFY!) However, the vectors

a1 =

 2
0
0

 a2 =

 0
−1

0


do not form a basis, for they do not span the whole space (although linearly
independent).
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The following properties of a basis can be veri�ed directly by the de�nition.

• A basis is a maximal linearly independent system.

• A basis is a minimal generating system.

• In a vector space every basis has the same number of elements. (ATTEN-
TION! NOT OBVIOUS.)

• In a vector space every vector can uniquely be expressed as the linear
combination of the basis.

De�nition 26.6 The standard basis in the vector space Rn is given by

e1 =


1
0
...
0

 e2 =


0
1
...
0

 . . . en =


0
0
...
1


and we always use the notation ek for these vectors (k = 1, . . . , n).

Verify that they really form a basis! In a certain sense this is the "simplest"
basis, since for every vector x we have

x = x1e1 + . . .+ xnen .

where x1, . . . , xn are the coordinates of x.

26.3 Dimension

Based on the properties of a basis, we can introduce the following de�nition.

De�nition 26.7 The dimension of a vector space or subspace M is de�ned as
the number of elements in a maximal linearly independent system (i.e. a basis).
Its notation is

dimM

Example 26.8 In view of Example 26.6 for every integer n we have

dimRn = n

since e1, . . . , en is a maximal linearly independent system, i.e. a basis.
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Example 26.9 Consider now the subspace M spanned by the vectors

a1 =

 2
2
−3

 a2 =

 1
−1

1

 a3 =

 5
3
−5


and �nd the dimension of M .

We can easily check that a1 and a2 are linearly independent, but a1, a2, a3
are not, since

2a1 + a2 = a3 .

Therefore, the dimension of the generated subspace is

dimM = dim lin{a1, a2, a3} = 2 .

Of course, it is also true that dim lin{a1, a2} = 2.

De�nition 26.10 The rank of a collection of vectors a1, . . . , ak is de�ned as
the dimension of the subspace spanned by the given vectors. Notation:

rank{a1, . . . , ak} = dim lin{a1, . . . , ak} .

26.4 Gauss-Jordan-elimination

In this section we exhibit a very simple but powerful procedure to check quickly
if a collection of vectors is linearly independent.

Consider a vector a in the vector space Rn that can be given in the form

a = α1e1 + . . .+ αnen (26.1)

in the standard basis. Consider another vector b with

b = β1e1 + . . .+ βnen where β1 6= 0 . (26.2)

QUESTION: What linear combination will express the vector a, if we use the
basis b, e2, . . . , en instead of the standard basis, i.e. the vector e1 is replaced by
the vector b?

REMARK: As we see, the condition β1 6= 0 implies that the collection
b, e2, . . . , en is a basis. Indeed, on the one hand, it has n elements, on the
other hand b is independent of the others (i.e. to express b we need the vector
e1 as well).
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Isolate the vector e1 from the equality (26.2) the we get:

e1 =
1

β1
b− β2

β1
e2 − . . .−

βn
β1
en

and replace e1 by this expression in equality (26.1). After rearranging we have
that

a =
α1

β1
b+

(
α2 −

α1

β1
β2

)
e2 + . . .+

(
αn −

α1

β1
βn

)
en . (26.3)

This procedure, called Gauss-Jordan-elimination, provides the expression of
vector a with respect to the new basis b, e2, . . . , en.

Example 26.11 Using Gauss-Jordan-elimination decide if the vectors

a =

 1
−1

2

 b =

 2
1
−1

 c =

 3
3
−4


are linearly independent. This process is as follows:

1 2 3 2 3 −1

−1 1 3 3 6 2
2 −1 −4 −5 −10 0

The calculation shows that the vectors are not independent. In particular,
we obtain that the vector c can be expressed in terms of a and b, namely
c = −a+ 2b. Thus, the rank of the collection a, b, c is 2, in other words

dim lin{a, b, c} = 2 .

Example 26.12 Consider the following vectors in the vector space R4

a1 =


1
0
−1

2

 a2 =


2
1
0
−1

 a3 =


−1
−2
−3

8

 a4 =


1
1
1
3


and �nd the dimension of the subspace M spanned by the vectors a1, a2, a3, a4

M = lin {a1, a2, a3, a4}

Carry out the Gauss-Jordan-elimination process for the given vectors, then
we get

1 2 −1 1 2 −1 1 3 −1

0 1 −2 1 1 −2 1 −2 1
−1 0 −3 1 2 −4 2 0 0

2 −1 8 −3 −5 10 −5 0 0
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The result tells us that the vectors a3 and a4 linearly depend on the vectors a1
and a2, speci�cally

a3 = 3a1 − 2a2

and
a4 = −a1 + a2

Consequently, the maximum number of linearly independent vectors in the sys-
tem of vectors a1, a2, a3, a4 is 2, namely a1 and a2. Therefore, we deduce that

dimM = dim lin {a1, a2, a3, a4} = 2 .

Recitation and Exercises

1. Reading: Textbook-1, Sections 12.1, 12.2, 12.3 and 14.1.

2. Homework: Textbook-1, Section 14, Exercises 1, 2, 3, 4, 5 and 7.

3. Review: "Linear Algebra Exercises



Chapter 27

Linear mappings and matrices

27.1 Linear mappings

Let n and m be integers and consider the vector spaces Rn and Rm (with
dimensions n and m respectively).

De�nition 27.1 The map A : Rn → Rm is called a linear map if

• A(x+ y) = Ax+Ay

• A(αx) = αAx

for all vectors x, y ∈ Rn and every scalar α ∈ R.
If n = m, i.e. A maps the vector space into itself, then A is called a linear

transformation.

We can easily check the following properties of a linear map:

• A(αx+ βy) = αAx+ βAy for all vectors x, y and scalars α, β.

• A0 = 0, that is the image of the vector 0 is always the vector 0.

Example 27.2 Below we de�ne some mappings that map the plane R2 into
itself.

1. Let A be the map that associates with every vector x its λ-multiple, i.e.
Ax = λx (λ ∈ R).

2. Let A be the map that associates with every x re�ection with respect to
the horizontal axis.

171
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3. Let A be the map that associates with every vector its projection onto the
straight line y = x (the 45◦ line bisecting the right angle).

4. Let A be the map that associates with every vector its rotation around
the origin by the angle ϕ (in positive direction).

In each of the above examples show that A de�nes a linear transformation
of the plane R2 (i.e. ful�lls both equalities). CREATE PICTURES!

27.2 Matrix of a linear map

In this section we take advantage of the simple fact: given a linear map, if we
know the images of the basis vectors, then we can calculate the images of all
vectors.

Indeed, let a linear map A : Rn → Rm be given, and consider the standard
basis e1, . . . , en in the vector space Rn. If we pick any vector x ∈ Rn, then x is
given in the standard basis:

x = x1e1 + . . .+ xnen .

Apply the map A on both sides, then by the linearity

Ax = x1Ae1 + . . .+ xnAen ,

that means for Ax we only need the images Ae1, . . . , Aen.

Let us denote by f1, . . . , fm the standard basis in the vector space Rm, then
we can express the vectors Ae1, . . . , Aen this way:

Ae1 = a11f1 + a21f2 + . . .+ am1fm

Ae2 = a12f1 + a22f2 + . . .+ am2fm
...

Aen = a1nf1 + a2nf2 + . . .+ amnfm

If we now collect the coe�cients in these equalities in chart, we obtain a matrix
of size m× n. That is called the matrix of the linear map A:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
am1 am2 . . . amn


that consists of m rows and n columns. The j-th column of the matrix is the
vector Aej in the standard basis f1, . . . , fm of the space Rm. Thus, we can obtain
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the image Ax of the vector x by multiplying the matrix A by the coordinates
of x this way:

Ax =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
am1 am2 . . . amn

·

x1
x2
...
xn

 =


a11x1 + . . .+ a1nxn
a21x1 + . . .+ a2nxn

...
am1x1 + . . .+ amnxn

 (27.1)

i.e. the product Ax is a vector with m coordinates in the space Rm.
Clearly, every linear map has a matrix representation in given bases. Con-

versely, it is also evident that the equality (27.1) de�nes a linear map on the
vector space. We conclude that there is a one-to-one correspondence between
linear maps and matrices.

ATTENTION! In the rest of this book we are not going to make a di�er-
ence between linear maps and their matrices.

Example 27.3 Consider the linear transformations introduced in Example
27.2. Their matrices in the standard bases are (in this order):

1. A =

[
λ 0
0 λ

]
2. A =

[
1 0
0 −1

]
3. A =

[
1/2 1/2
1/2 1/2

]
4. A =

[
cosϕ − sinϕ
sinϕ cosϕ

]
Use pictures to verify these results!

27.3 Rank and degree of freedom of a matrix

De�nition 27.4 Consider a linear map A : Rn → Rm (i.e. an m×n matrix).
The range of A

imA = {y ∈ Rm : van olyan x ∈ Rn, hogy y = Ax}

is called the image of A, and the set

kerA = {x ∈ Rn : Ax = 0}

is called the kernel of A. It is easy to see that both kerA and imA are subspaces
in the vector spaces Rn and Rm respectively.

In view of the de�nition the subspace imA is the subspace of vectors that
can be expressed as the linear combinations of the columns of A. In other words,
if a1, . . . , an denote the columns of A, then

imA = lin {a1, . . . , an} .
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Quite similarly, kerA is the subspace of those vectors x for which

Ax = x1a1 + . . .+ xnan = 0 ,

where x1, . . . , xn denote the coordinates of x.

Example 27.5 Consider the following matrix A

A =

 1 3 1
−2 1 5

2 2 −2


and denote the columns by a1, a2 and a3. Using Gauss-Jordan-elimination we
see that the columns are not independent, since a3 = −2a1 +a2. Therefore, the
image of A (i.e. the subspace spanned by the columns) is:

imA = lin {a1, a2} .

On the other hand, if we rearrange the equality above, we get

−2a1 + a2 − a3 = 0 .

This tells us that

kerA = lin


 −2

1
−1

 =

t ·
 −2

1
−1

 ∈ R3 : t ∈ R

 ,

that is, all these vectors multiplied by A result in zero vector.

De�níció 27.6 The rank of an m × n matrix A is de�ned as the dimension
of its image, that is:

rankA = dim imA

which is equal to the maximum number of linearly independent columns of A.
The degree of freedom of A is de�ned by

degA = dim kerA .

For instance, in the case of the matrix A in Example 27.5, we have rankA = 2
and degA = 1.
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Theorem 27.7 For any linear map A on Rn we have rankA+ degA = n

Proof. Let a1, . . . , ak be the basis vectors of the subspace kerA, and let
Ab1, . . . , Abm be the basis vectors of the sub space imA. We show that vectors

a1, . . . , ak, b1, . . . , bm

combined form a basis of the vector space Rn. Indeed, on the one hand, they
are linearly independent, because the equality

α1a1 + . . .+ αkak + β1b1 + . . .+ βmbm = 0

multiplied by A gives us

β1Ab1 + . . .+ βmAbm = 0

and this yields β1 = . . . = βm = 0. It follows that α1 = . . . = αk = 0.

On the other hand, they form a generating system: if x ∈ Rn is taken
arbitrarily, then Ax ∈ imA, and hence, it can be expressed in terms of the
vectors Ab1, . . . , Abm

Ax = β1Ab1 + . . .+ βmAbm

This means that x− (β1b1 + . . .+βmbm) ∈ kerA, so it is the linear combination
of the basis vectors a1, . . . , ak

x− (β1b1 + . . .+ βmbm) = α1a1 + . . .+ αkak .

Consequently, k +m = n. �

27.4 Multiplication of matrices

Suppose we are given two linear maps A : Rn → Rm and B : Rm → Rk Then
we can consider the composition mapping B ◦ A : Rn → Rk that we denote as
the product of the two maps:

BA = B ◦A .

We can easily verify that BA : Rn → Rk is a linear map as well, therefore its
matrix in the standard basis is of the size k × n. How can we compute this
matrix?

For a given index j consider the image of the vector Aej with the map B
(i.e. the vector B(Aej)). The i-th coordinate of this image vector is:

bi1a1j + . . .+ bimamj ,

which is precisely the entry in the product matrix BA of the i-th row and the
j-th column. Conclusion: we carry out the multiplication of the matrices so
that we multiply all rows of B by the columns of A according to the above rule.
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ATTENTION! The order is important! The product BA does not coincide
with AB (except some special situations). It may happen that the other is not
even de�ned.

Example 27.8 In view of the rule above, verify the following multiplication
of matrices: 2 3 1 0

−1 0 2 1
1 1 −1 1

 ·

−1 2 −4

1 −1 1
0 3 −2
1 1 0

 =

 1 4 −7
2 5 −1
1 −1 −1

 .
so the product matrix is of size 3× 3.

Regarding the multiplication of matrices as the composition of mappings,
we the following associative property:

C(BA) = (CB)A (27.2)

in all cases when the multiplication is well de�ned.

Example 27.9 Consider the matrix A de�ned with a parameter α

A =

 1 2 5
2 −1 0
−3 1 α


and �nd its rank and degree of freedom. Using Gauss-Jordan-elimination we
conclude:

1 2 5 2 5 1

2 −1 0 -5 −10 2
−3 1 α 7 α+ 15 α+ 1

This tells us that

rankA =

{
3 if α 6= −1
2 if α = −1

and making use of Theorem 27.7 we have

degA =

{
0 if α 6= −1
1 if α = −1 .

Recitation and Exercises

1. Reading: Textbook-1, Sections 12.6, 12.7, 12.8 and 14.2

2. Homework: Textbook-1, Section 12, Exercises 3, 4, 5, 6, 7, 8, and Section
14, Exercises 1, 2 and 3.

3. Review: "Linear Algebra Exercises"



Chapter 28

Linear systems

28.1 Homogeneous systems

By a homogeneous system we mean the following system of linear equations:

a11x1 + . . .+ a1nxn = 0

...

am1x1 + . . .+ amnxn = 0

where the coe�cients aij are given real numbers. Solve the system for the
unknowns x1, . . . , xn.

If we compile the matrix A of coe�cients and the vector x of unknowns this
way:

A =

 a11 . . . a1n
...

am1 . . . amn

 x =

 x1
...

xn


then the homogeneous system can be rewritten in the form:

Ax = 0 (28.1)

whose solution set is exactly the subspace kerA. The vector x = 0 is always a
solution, if this is not the only one, we have in�nitely many solutions.

Example 28.1 Find all solutions of the homogeneous system

x1 + 3x2 − 3x3 = 0

2x1 + x2 + 4x3 = 0

x1 + 2x2 − x3 = 0
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Now the matrix A of coe�cients is

A =

 1 3 −3
2 1 4
1 2 −1


and consider the system Ax = 0. Use Gauss-Jordan-elimination:

1 3 −3 3 −3 3

2 1 4 −5 10 −2

1 2 −1 −1 2 0

It shows that the columns of A are dependent. Denote the columns by a1, a2, a3,
then we get

a3 = 3a1 − 2a2 , that is 3a1 − 2a2 − a3 = 0 .

Therefore, x1 = 3, x2 = −2 and x3 = −1 are solutions. The whole solution set
is given by: megoldás pedig az

x = t ·

 3
−2
−1

 , t ∈ R

Clearly, in this situation we have

degA = 1 and rankA = 2 .

28.2 Inhomogeneous systems

Consider the m× n matrix A, and let b ∈ Rm be a nonzero vector. The system

Ax = b (28.2)

is called an inhomogeneous system of linear equations.

Theorem 28.2 The system (28.2) has a solution if and only if b ∈ imA, i.e.
the vecor b can be expressed as a linear combinations of the columns of A.

The solution is unique only if the columns of A are independent, i.e. its
degree of freedom is zero.

Proof. We only need to prove the unicity of solution. The proof is by
contradiction: if there were two solutions, x and y, then

A(x− y) = Ax−Ay = b− b = 0 ,
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but this means that the columns of A are dependent. �

Assume now that we know a particular solution x̄ of the inhomogeneous
system. Then all solutions can be given by using the solution set of the homo-
geneous system. This is formulated in the following theorem.

Theorem 28.3 Let x̄ be a given solution to the inhomogeneous system. Then
all solutions can be given in the form

x = x̄+ x0

where x0 is a solution of the homogeneous system. Conversely, if x0 is any so-
lution of the homogeneous system, then x̄+x0 solves the inhomogeneous system.

Proof. Indeed, if x is any solution of the inhomogeneous system, then
consider the vector x0 = x − x̄. This vector solves the homogeneous system,
because

Ax0 = A(x− x̄) = Ax−Ax̄ = b− b = 0 ,

and we see that x = x̄+ x0.

Conversely, take a solution x0 of the homogeneous system arbitrarily, and
set x = x̄+ x0. Then

Ax = A(x̄+ x0) = Ax̄+Ax0 = b+ 0 = b ,

that means x solves the inhomogeneous system. �

Example 28.4 Find all solutions of the inhomogeneous system below:

x1 − x2 + 3x3 + 3x4 = 1

x1 − 2x2 + x3 − x4 = 4

2x1 + x2 − x3 + 5x4 = 6 .

Using the notations above, we have

A =

 1 −1 3 3
1 −2 1 −1
2 1 −1 5

 and b =

 1
4
6

 .
The matrix A has 3 rows and 4 columns, therefore its degree of freedom is at
least 1, so the solution is certainly not going to be unique (if any). Gauss-
Jordan-elimination shows:

1 −1 3 3 1 −1 3 3 1 5 7 −2 2 3

1 −2 1 −1 4 −1 −2 −4 3 2 4 −3 2 −1

2 1 −1 5 6 3 −7 −1 4 −13 −13 13 1 −1
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Consequently, the rank of A is 3, and its degree of freedom is 1. If we denote
the columns of A by a1, a2, a3, a4, then the above calculation tells us (look up
the last two columns) that

a4 = 2a1 + 2a2 + a3 moreover b = 3a1 − a2 − a3 .

This way we can give a solution to the inhomogeneous and homogeneous system
as well:

x̄ =


3
−1
−1

0

 and x0 =


2
2
1
−1

 .
According to our theorem above, the solution set of the inhomogeneous system
is given by:

x = x̄+ t · x0 =


3
−1
−1

0

+ t ·


2
2
1
−1

 t ∈ R .

Example 28.5 For what values of the unknown parameters α and β does the
inhomogeneous system Ax = b have solutions?

A =

 1 −1 0
2 1 3
−1 1 α

 and b =

 1
2
β

 .
Perform the Gauss-Jordan-elimination:

1 −1 0 1 −1 0 1 1 1

2 1 3 2 3 3 0 1 0
−1 1 α β 0 α β + 1 α β + 1

Then we conclude:

• there is exactly one solution if α 6= 0 and β is any real number,

• there are in�nitely many solutions if α = 0 and β = −1,

• there is no solution if α = 0 and β 6= −1

The rank and degree of freedom of A depend on the parameters this way:

rankA =

{
3 if α 6= 0
2 if α = 0

and

degA =

{
0 if α 6= 0
1 if α = 0 .
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28.3 Inverse of a matrix

Let E denote the n×nmatrix where all diagonal elements are 1, and all elements
outside the diagonal are 0. This matrix is called the n × n unit matrix . If we
regard E as linear transformation, it is the identity : for every vector x we have
Ex = x.

De�nition 28.6 Consider an n × n square matrix A. We say that A is
invertible, if there exists an n× n square matrix A−1 such that

A ·A−1 = E .

The matrix A−1 is called the inverse matrix of A.

Clearly, A−1 is the inverse linear map, that is AA−1x = x for every x ∈ Rn.
It is easy to see that we also have A−1A = E in this case, and (A−1)−1 = A.

The necessary and su�cient condition for the existence of the inverse is that
the map A is one-to-one. The next theorem is based on this observation.

Theorem 28.7 For an n×n matrix A the following statements are equivalent:

1. A is invertible.

2. The columns of A are independent.

3. kerA = {0}

4. imA = Rn

5. rankA = n

6. degA = 0 .

Instead of checking the equivalences pairwise (there are 15 of them!), it is
enough to prove the following array of implications:

1⇒ 2⇒ 3⇒ 4⇒ 5⇒ 6⇒ 1

They all come simply from the de�nition, and from Theorem 27.7.

ATTENTION! Please make sure you understand that the array of implica-
tions above really substitutes the pairwise equivalences. In mathematics this is
a commonly used (and quick) method for proving equivalences of several state-
ments.

In the case of invertible matrices the solution of a linear system can be given
explicitly.
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Theorem 28.8 Let A be an n×n invertible matrix. Then the inhomogeneous
system

Ax = b

has a unique solution for every b ∈ Rn, and the solution is given by

x = A−1b

It is worth mentioning though, that in most cases solving the system by
Gauss-Jordan-elimination is much faster than �nding the inverse. Finding the
inverse is mainly advantageous when the system has to be solved multiple times
with di�erent vectors b on the right-hand side.

28.4 Finding the inverse

Consider an n×n invertible matrix A. Finding the inverse basically means that
we are looking for an n × n matrix X so that AX = E. If the columns of this
unknown matrix X are denoted by x1, . . . , xn, then this process means solving
n copies of inhomogeneous systems of the form

Axk = ek

(k = 1, . . . , n). This process is illustrated in the following example, where we
solve all copies simultaneously with Gauss-Jordan-elimination.

Example 28.9 Is the matrix A below invertible? If yes, �nd the inverse.

A =

 1 1 1
0 1 1
1 0 1

 .
We solve the systems Ax = e1, Ax = e2, Ax = e3 simultaneously:

1 1 1 1 0 0 1 1 1 0 0 0 1 −1 0 1 −1 0

0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 −1

1 0 1 0 0 1 −1 0 −1 0 1 1 −1 1 1 −1 1 1 .

This shows us that

A−1 =

 1 −1 0
1 0 −1
−1 1 1

 .
We can directly verify this result by carrying out the multiplication AA−1 = E.
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Example 28.10 Let A and B are n×n invertible matrices. Regarding A and
B as mappings, it is obvious that the product AB is also invertible, since AB
is one-to-one as well.

How can we �nd the inverse matrix (AB)−1? We show that

(AB)−1 = B−1A−1 .

Indeed, the matrix on the right-hand side is the inverse of the product AB, since

(AB)B−1A−1 = A(BB−1)A−1 = AEA−1 = E

in view of the associative rule (27.2).

Recitation and Exercises

1. Reading: Textbook-1, Sections 13.6, 13.7 and 14.3.

2. Homework: Textbook-1, Section 13.6, Exercises 2, 3, 4, 5, 6, 8, 10, 12,
Section 13.7, Exercises 2 and 4, Section 14.3, Exercises 1, 2, 3, 5 and 6.

3. Review: "Linear Algebra Exercises"
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Chapter 29

Eigenvalue, eigenvector

29.1 Eigenvalue, eigenvector

De�nition 29.1 Consider a linear transformation A : Rn → Rn that is, an
n× n matrix. We say that a real number λ is an eigenvalue of A if there exists
a vector v 6= 0 for which

Av = λv .

In this case v is called an eigenvector of A associated with the eigenvalue λ.

Example 29.2 Consider the linear transformation A of the vector space R3

and the vector v, where

A =

 2 1 −1
0 1 1
2 0 −2

 and v =

 2
1
1

 .
It is easy to verify that

Av = 2v

which means that λ = 2 is an eigenvalue of A, and v is an associated eigenvector.
On the other hand, for the vector

u =

 1
−1

1


we have

Au = 0

185



186 CHAPTER 29. EIGENVALUE, EIGENVECTOR

thus, λ = 0 is an eigenvalue as well, and u is an associated eigenvector. Verify
that λ = −1 is also an eigenvector of A and try to �nd an associated eigenvector!

ATTENTION! An eigenvector that belongs to (or associated with) a given
eigenvalue λ is never unique. Just think of the fact that if v is an eigenvector
then so is any α 6= 0 scalar multiple. Indeed,

A(αv) = αAv = α · λv = λ(αv) .

Example 29.3 Examine the planar transformations in Example 27.2 and �nd
their eigenvalues.

1. If A is the α-multiple of all vectors, then α is the only eigenvalue of A,
and every nonzero vector of the plane is an eigenvector.

2. If A is the re�ection with respect to the horizontal axis, then λ1 = 1 is an
eigenvalue, and e1 is an associated eigenvector, further λ2 = −1 is also an
eigenvalue, and e2 is an associated eigenvector.

3. If A is the projection onto the 45◦ degree line, then the eigenvalues and
the corresponding eigenvectors are as follows:

λ1 = 1 and v1 =

[
1
1

]
moreover λ2 = 0 and v2 =

[
−1

1

]
4. If A is the rotation around the origin by the angle 0 ≤ ϕ < 2π in positive

direction, then for ϕ = 0 we have λ = 1, while for ϕ = π we have λ = −1
and they are the only eigenvalues. In both cases all nonzero vectors of the
plane are eigenvectors.

For other angles the rotation A has no real eigenvalues.

29.2 Eigensubspace

De�nition 29.4 Take a linear transformation A of the vector space Rn and
suppose the λ is an eigenvalue of A. All vectors v with Av = λv form a subspace
the is called the eigensubspace of A associated with λ. Notation:

SA(λ) = {v ∈ Rn : Av = λv}
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Example 29.5 Consider the following matrix

A =

 1 0 0
1 2 0
0 0 2


Simple calculation shows that λ = 2 is an eigenvalue of A and e2, e3 are eigen-
vectors (linearly independent).

More independent eigenvectors associated with λ = 2 cannot be found, thus

dimSA(2) = 2

and e2 and e3 form the basis of this eigensubspace.

29.3 Finding eigenvectors

In this section we an n × n matrix A and suppose that λ is an eigenvalue.
Question: how can �nd all associated eigenvectors?

Let E denote the n×n identity matrix, and assume that v is an eigenvector
that belongs to λ. Then

Av = λv = λEv

or by moving all terms to the left-hand side:

(A− λE)v = 0

Consequently, v is a solution of a homogeneous system. This observation is
formulated in the next theorem.

Theorem 29.6 Let A be an n×n matrix, and λ is an eigenvalue of A. Then

SA(λ) = ker (A− λE)

that is the eigensubspace is given by all solutions of a homogeneous system.

The case λ = 0 particularly interesting. In fact, if 0 is an eigenvalue, then
the homogeneous system Av = 0 possesses a nonzero solution, and hence the
rank of A cannot be n. We emphasize this fact in a separate theorem.

Theorem 29.7 A is invertible if and only if λ = 0 is not an eigenvalue.

In most cases it is a lot more di�cult problem to �nd the eigenvalues of a
linear transformation A.
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29.4 Independent eigenvectors

Consider a linear transformation A on the vector space Rn, and suppose that
λ1, . . . , λk are all di�erent eigenvalues of A. Take the nonzero corresponding
eigenvectors v1, . . . , vk. We show that these vectors are linearly independent.

Theorem 29.8 The eigenvectors that belong to di�erent eigenvalues are lin-
early independent.

Proof. We prove by induction. The statement is trivial k = 1. Let us
suppose that the statement is true up to k− 1. Now we prove by contradiction:
assume that v1, . . . , vk are dependent. This means that the vectors have a linear
combination

α1v1 + . . .+ αkvk = 0 (29.1)

where not all coe�cients are zero, for simplicity, say α1 6= 0. Multiply both
sides by the matrix A, then we get

α1Av1 + . . .+ αkAvk = α1λ1v1 + . . .+ αkλkvk = 0

If we subtract the λk-multiple of equality (29.1) from this latter equality, then
the last term will be cancelled, and what remains is:

α1(λ1 − λk)v1 + . . .+ αk−1(λk−1 − λk)vk−1 = 0 .

Since all eigenvalues are di�erent, and α1 6= 0, we see that the coe�cient of v1
is not zero, which means the vectors v1, . . . , vk−1 are dependent. However, this
contradicts to the assumption in the induction. �

Example 29.9 Consider again the matrix A examined in Example 29.2.
Simple calculation shows that λ1 = 2, λ2 = 0 and λ3 = −1 are all eigenvalues
of A and the associated eigenvectors are

v1 =

 2
1
1

 , v2 =

 1
−1

1

 and v3 =

 1
−1

2


respectively. Using Gauss-Jordan-elimination, verify that vectors v1, v2, v3 are
really linearly independent.

29.5 Diagonal form of transformations

A matrix is called diagonal if all entries outside the diagonal are zero (for ex-
ample like in the identity matrix). Diagonal matrices are easy to work with
(multiplication, power, etc.) that is why they are useful in linear algebra and
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its applications. This justi�es the important question: if a transformation is
given, does there exist a basis in which its matrix becomes diagonal? As we will
see in this section, such a basis consists of eigenvectors (if it exists).

Let us suppose that the eigenvalues of an n × n matrix A are λ1, . . . , λn
(not necessarily all di�erent), and the corresponding eigenvectors are v1, . . . , vn,
respectively. Assume that the eigenvectors are independent. Since their number
is n, they form a basis of the space Rn.

Find the matrix of the transformation A in the basis of the eigenvectors! Let
Â denote the matrix in this new basis. Since for all eigenvectors we have

Avk = λvk k = 1, . . . , n

this shows that Â will look like:

Â =

 λ1 . . . 0
. . .

0 . . . λn


Let us examine the relationship between the matrices of the transformation A
with respect to the bases e1, . . . , en resp. v1, . . . , vn. Denote by S the n × n
matrix, whose columns are the the eigenvectors v1, . . . , vn, i.e.

Sek = vk

Clearly, S invertible because its columns are linearly independent. Moreover

Avk = SÂek

for every index k = 1, . . . , n. Multiply both sides by the matrix S−1, then we
get

S−1ASek = Âek

for every index k, therefore
Â = S−1AS

We summarize these results in the following theorem.

Theorem 29.10 Suppose that A is an n × n matrix whose eigenvalues are
λ1, . . . , λn, and the corresponding eigenvectors v1, . . . , vn form a basis of the
space. Then the matrix of A with respect to the basis of the eigenvectors is a
diagonal matrix Â with the eigenvalues in the diagonal. More speci�cally:

Â = S−1AS

where the columns of S are the eigenvectors v1, . . . , vn.

Példa 29.11 Consider again the linear transformation A in Example 29.2.
For the eigenvalues λ1 = 2, λ2 = 0 and λ3 = −1 the corresponding eigenvectors
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are

v1 =

 2
1
1

 , v2 =

 1
−1

1

 and v3 =

 1
−1

2


These vectors are independent, therefore they form a basis of the space R3.
With respect to this basis the matrix of A will be diagonal. More speci�cally:

S =

 2 1 1
1 −1 1
1 −1 2

 and Â =

 2 0 0
0 0 0
0 0 −1


and with these notations

Â = S−1AS

Please verify this identity directly by determining the inverse matrix S−1 and
by carrying out the indicated multiplications!

Example 29.12 Unfortunatly, not every transformation has a diagonal form.
The reason is that the eigenvectors may not form the basis of the space. For
instance, in the two dimensional situation, the matrix

A =

[
1 1
0 1

]
has one eigenvalue: λ = 1, and there is only one independent eigenvector (for
instance e1). VERIFY!

Recitation and Exercises

1. Reading: Textbook-1, Sections 14.4 and 14.5.

2. Homework: Textbook-1, Section 14.4, Exercises 1, 2, 3, 4, 5, 6, 7, and
Section 14.5, Exercises 1, 2 and 3.

3. Review: "Linear Algebra Exercises"



Chapter 30

Determinant

30.1 Permutations

Consider the set H = {1, . . . , n} of the �rst n integers.

De�nition 30.1 A one-to-one map p : H → H is called a permutation of the
set H.

Intuitively, a permutation is an arrangement of the elements in H. The
number of all permutations of H is n! (n factorial).

De�nition 30.2 Consider a permuatation p of the set H, for which

p(1) = i1, . . . p(n) = in

that is the arrangement {i1, . . . , in}. We say that the elements ij and ik form
an inversion if j < k and ij > ik.

Example 30.3 For instance, in case of n = 5 the permutation

{1, 3, 2, 4, 5}

contains a single inversion, while in the permutation

{2, 3, 1, 5, 4}

we �nd three inversions.

De�nition 30.4 A permutation p of the set H halmaz p is called odd if the
number of inversions is odd, otherwise we say that the permutation is even.
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30.2 The determinant

Consider the following n× n matrix A

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

an1 an2 . . . ann



De�ntion 30.5 By the determinant of the matrix A we mean the following
expression:

detA =
∑

(−1)Pa1i1a2i2 · · · anin

where the summation is carried out for all permutations {i1, . . . , in} of the set
H = {1, . . . , n} thus, the sum contains n! terms. The exponent of (−1) is odd
or even, if the permutation {i1, . . . , in} is odd or even, respectively.

Some other usual widely used notations (each one is used throughout this
book):

detA = |A| =

∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣
As we can see from the de�nition, the products behind the sum sign are compiled
so that they contain precisely one factor from each row and from each column
of the matrix.

Example 30.6 Verify directly by the de�nition that for the matrices

A =

[
2 −1
3 4

]
and B =

 2 1 −1
0 1 3
1 0 −2


we have detA = 11 and detB = 0.

30.3 Properties of the determinant

Theorem 30.7 detA = detAT .
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Indeed, if the rows and the columns of the matrix are interchanged, then the
parity of the inversions will not change.

Theorem 30.8 If all elements of one row of the matrix are zero, then the
determinant of the matrix is zero

Indeed, in this case all terms behind the sum sign contain a zero factor.

Theorem 30.9 If we interchange two rows of the matrix, then the determinant
of the matrix changes the sign.

Indeed, in this case the parity of inversions in every term will change.

Theorem 30.10 If two rows in the matrix are identical, then the determinant
of the matrix is zero.

Indeed, if we interchange the two identical rows, then on the one hand the
determinant changes the sign, on the other hand it remains unchanged, thus
detA = −detA. Hence, detA = 0.

Theorem 30.11 If a row of a matrix is multiplied by λ, then its determinant
is multiplied by λ as well.

Indeed, in this case every term behind the sum sign is multiplied by λ, since
every term contains precisely one factor from each row.

Theorem 30.12 If in a matrix one row is a λ-multiple of another row, then
the determinant of the matrix is zero.

Indeed, if λ is factored out from the matrix, then we obtain a matrix with
two identical rows.

Theorem 30.13 If in a matrix the i-th row is given in the form of a sum like

aij = bij + cij j = 1, . . . , n

then its determinant is the sum of the two determinants with i-th rows of ele-
ments bij and cij respectively.

Indeed, behind the sum sign every product is the sum of such terms.

Theorem 30.14 If in a matrix one row is the linear combination of the other
rows, then its determinant is zero.
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Indeed, divide the determinant into a sum as in the preceding theorem. If
we now factor out the scalar coe�cients from each term, we obtain two identical
rows in each determinant. Therefore, each of them is zero.

Theorem 30.15 If in a matrix we add a λ scalar multiple of a row to another
row, then the determinant remains unchanged.

Indeed, in this case the determinant can be divided into a sum of two deter-
minants, where the second term is zero.

Theorem 30.16 If A and B are n×n matrices, then det (AB) = detA ·detB.

This statement can be veri�ed by carrying out the matrix multiplication
step-by-step, and by exploiting our previous theorems.

Finally, as a consequence, we can formulate the following fundamental prop-
erty.

Theorem 30.17 The columns of a square matrix A are linearly dependent if
and only if detA = 0.

The necessity is an immediate corollary of Theorem 30.14. The su�ciency
comes from the fact that if the columns of A are linearly independent, then A
invertible, and hence AA−1 = E. Thus,

det (AA−1) = detA · detA−1 = detE = 1

and consequently, detA 6= 0.

30.4 Evaluating the determinant

We conclude directly from the de�nition that the determinant of a 2× 2 matrix
is given by

detA = a11a22 − a12a21
Completely analogously, the determinant of a 3×3 matrix can be evaluated like

detA = a11

∣∣∣∣ a22 a23
a32 a33

∣∣∣∣− a12 ∣∣∣∣ a21 a23
a31 a33

∣∣∣∣+ a13

∣∣∣∣ a21 a22
a31 a32

∣∣∣∣
If we apply this observation iductively, we come to the following result.

Theorem 30.18 Consider the n × n matrix A, and denote by A1j the (n −
1)×(n−1) matrix that we obtain by discarding the �rst row and the j-th column
of A. Then

detA =

n∑
j=1

(−1)j+1a1jdetA1j
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This procedure is called the division into subdeterminants.

Example 30.19 Apply the division into subdeterminants procedure for the
matrix

A =


3 6 0 2
0 1 2 4
4 8 3 5
1 2 0 0


Step-by-step, �rst taking the 3 × 3 subdeterminants, then the 2 × 2 subdeter-
minants, verify that we �nally get detA = −6.

30.5 Finding the eigenvalues

Consider an n× n matrix A, and suppose that λ is an eigenvalue with a corre-
sponding eigenvector v 6= 0, i.e. Av = λv. This can be rewritten like

Av − λv = (A− λE)v = 0 .

This equality means that the columns of the matrix A−λE are linearly depen-
dent, since the homogeneous system possesses a nonzero solution. Making use
of Theorem 30.17 we come to the following conclusion.

Theorem 30.20 The scalar λ is an eigenvalue of the matrix A if and only if
det (A− λE) = 0.

This necessary and su�cient condition ultimately means �nding the roots
of the n-th degree polynomial det (A − λE). This polynomial is called the
characteristic polynomial of the matrix A.

Example 30.21 Consider the matrix

A =

 0 1 1
1 0 1
1 1 0


and �nd the eigenvalues. Expand the determinant of the matrix A− λE

det (A− λE) = (λ+ 1)2(λ− 2)

The roots of this cubic polynomial are λ1 = −1 (with multiplicity 2), and
λ2 = 2, and they are the eigenvalues of A. As a routine calculation, �nd the
correponding eigenvectors as well. The linearly independent solutions of the
homogeneous system

(A− λE)v = 0
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are as follows. For λ = −1 we have

v1 =

 −1
1
0

 and v2 =

 −1
0
1


as well as for λ = 2 we get

v3 =

 1
1
1


The vectors v1, v2, v3 form a basis of R3, and the matrix A admits the diagonal
form

Â =

 −1 0 0
0 −1 0
0 0 2


in this basis.

Recitation and Exercises
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and 4.
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Chapter 31

Scalar product

31.1 Scalar product

De�nition 31.1 The scalar product of the vectors x and y in the vector space
Rn is de�ned by

〈x, y〉 = x1y1 + . . .+ xnyn

where on the right-hand side we have the coordinates of the vectors.

Please observe that in the case of n = 2 this concept coincides with the one
studied in highschool.

De�nition 31.2 The norm or absolute value of a vector x ∈ Rn is de�ned by

‖x‖ = (〈x, x〉)1/2 =
√
x21 + . . .+ x2n

that we also call the length of the vector.

Clearly, in view of the Pythagorean theorem, this concept complies with our
geometric intuition. It is also easy to see that ‖x‖ = 0 if and only if x = 0.

De�nition 31.3 The distance of the vectors x and y is de�ned by ‖x− y‖.

Example 31.4 For instance, if we consider the vectors

x =

 2
−2

1

 and y =

 4
−3

0


then their scalar product is 〈x, y〉 = 14, and their norms are ‖x‖ = 3 and
‖y‖ = 5. The distance of the two vectors is ‖x− y‖ =

√
6. VERIFY!
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31.2 Angle of vectors, perpendicularity

Theorem 31.5 Cauchy-Schwarz-inequality For all vectors x, y ∈ Rn we
have

|〈x, y〉| ≤ ‖x‖ · ‖y‖

Proof. Let t be an arbitrarily chosen real number, and consider the following
quadratic polynomial:

g(t) = 〈x+ ty, x+ ty〉
On the one hand, by the de�nition of the scalar product we get:

g(t) = ‖x‖2 + 2t〈x, y〉+ t2‖y‖2

on the other hand this is the square of the norm of the vector x+ ty, therefore
it is nonnegative, i.e.

g(t) ≥ 0 for every t.

If a quadratic polynomial is nonnegative, then its discriminant is nonpositive
that is:

4 (〈x, y〉)2 ≤ 4‖x‖2 · ‖y‖2

Dividing by 4, and taking the square root of both sides we have

|〈x, y〉| ≤ ‖x‖ · ‖y‖

and this is exactly that we had to prove. �

Theorem 31.6 (Triangle-inequality) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Proof. Indeed, in view of the Cauchy-Schwartz-inequality we get

‖x+ y‖2 = 〈x+ y, x+ y〉 = ‖x‖2 + 2〈x, y〉+ ‖y‖2

≤ ‖x‖2 + 2‖x‖ · ‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2

and by taking the square root of both sides, the statement ensues. �

De�nition 31.7 The angle of the nonzero vectors x and y is de�ned as the
angle 0 ≤ ϕ ≤ π for which

cosϕ =
〈x, y〉
‖x‖ · ‖y‖

Moreover, we say that the vectors x and y are orthogonal (or perpendicular),
notation: x⊥y, if

〈x, y〉 = 0

Obviously, in this case cosϕ = 0, i.e. ϕ = π/2. The vector 0 is orthogonal to
any other vector.

ATTENTION! Please observe that the angle of vectors is well de�ned. In-
deed, in view of the Cauchy-Schwartz-inequality we see that −1 ≤ cosϕ ≤ 1.
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31.3 Orthogonal systems

De�nition 31.8 We say that the vectors a1, . . . , ak form an orthogonal system
in the vector space Rn, if none of them is the zero vector and they are pairwise
orthogonal, i.e.

〈ai, aj〉 = 0

for all indices i 6= j.

Theorem 31.9 Every orthogonal system is linearly independent.

Proof. Consider the orthogonal system a1, . . . , ak, and suppose that

α1a1 + . . .+ αkak = 0 .

Take scalar product of both sides by the vector ai vektorral. By the pairwise
orthogonality each product is zero except the i-th term, we get

αi‖ai‖2 = 0

Since ai 6= 0, we conclude that αi = 0. This argument can be applied for all
indices i = 1, . . . , k therefore, we have that α1 = . . . = αk = 0. This exactly
means that the vectors a1, . . . , ak are linearly independent. �

The above result tells us that in the space Rn the maximum number of
elements of an orthogonal system is n. At the same time, an orthogal system
with n elements forms the basis of the whole space.

De�nition 31.10 By an orthogonal basis of the space Rn we mean an or-
thogonal system a1, . . . , an. We say that this basis is orthonormal , if all basis
vectors have unit length, i.e. ‖ai‖ = 1 for every index i = 1, . . . , n.

The orthogonal or orthonormal basis of a subspace M is de�ned completely
analogously.

Example 31.11 For instance, it is easy to check that the vectors

a1 =


√
3
2
0
− 1

2

 , a2 =

 1
2
0√
3
2

 , a3 =

 0
−1

0


form an orthonormal basis of the space R3.
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31.4 Gram-Schmidt-procedure

Vectors given in an orthonormal basis are easy to work with (think of scalar
products!), so it is a natural question to ask if there exists an orthonormal
basis in any subspace. An a�rmative answer is given by the Gram-Schmidt-
procedure, which even provides an algorithm showing how to create this basis.

Consider a subspace M in the vector space Rn and suppose that the vectors
a1, . . . , ak form a basis of M . Starting with this basis, we show how we can
construct an orthonormal basis of M .

Put b1 = a1. Then set b2 = a2 + α1b1, where the unspeci�ed scalar α1 is
chosen so that b2 becomes orthogonal to the vector b1. This means

〈b2, b1〉 = 〈a2, b1〉+ α1〈b1, b1〉 = 0

From this equality we get

α1 = −〈b1, a2〉
‖b1‖2

and therefore

b2 = a2 −
〈b1, a2〉
‖b1‖2

b1 .

Very similarly, we look for the vector b3 in the form

b3 = a3 + β1b1 + β2b2

where the unspeci�ed scalars should be chosen so that b3 becomes orthogonal to
both vectors b1 and b2. Finding the scalars from the two conditions, we obtain
Ekkor a két feltételb®l az együtthatókat meghatározva

b3 = a3 −
〈b1, a3〉
‖b1‖2

b1 −
〈b2, a3〉
‖b2‖2

b2 .

By continuing this process, �nally we come to an orthogonal basis of the sub-
space M . We formulate this result in the theorem below.

Theorem 31.12 (Gram-Schmidt) In every subspace of Rn there exists an
orthonormal basis.

Proof. In the construction above divide each vector bi by the positive scalar
‖bi‖, then we obtain an orthonormal basis. �

31.5 Orthogonal complement

Consider a subspace M in the vector space Rn.

De�nition 31.13 The set of all vectors that are orthogonal to every vector
of M is denoted by

M⊥ = {y ∈ Rn : 〈y, x〉 = 0 for every x ∈M}
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and is called the orthogonal complement of M .

We can easily check that M⊥ is a subspace in Rn.

Példa 31.14 In the three dimensional space the orthogonal complement of a
straight line that passes through the origin is the perpendicular plane passing
through the origin. Conversely, the orthogonal complement of a plane is the
perpendicular line cutting the plane in the origin.

For instance, if M is a subspace spanned by two vectors:

M = lin


 −1

0
1

 ,
 1

2
1


then the orthogonal complement is the subspace spanned by a single vector:

M⊥ = lin


 1
−1

1


The converse statement is also true, this is claimed in the following theorem.

Theorem 31.15 For any subspace M we have (M⊥)⊥ = M .

The statement follows easily from the de�nition.

Theorem 31.16 Pick a vector a ∈ Rn and consider a subspace M . Then
there exists exactly one vector u ∈M for which

a− u ∈M⊥

Proof. Take an orthonormal basis b1, . . . , bk in the subspace M . We try to
�nd the vector u of the subspace M in the form:

u = α1b1 + . . .+ αkbk

The unspeci�ed scalar coe�cients have to be chosen so that a−u is orthogonal
to each basis vector. This means the following equalities:

〈bi, a− u〉 = 〈bi, a〉 − αi = 0

for all indices i = 1, . . . , k. The unknown scalars are uniquely determined by
these equalities. �
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This vector u is called the orthogonal projection of a onto the subspace M .

Theorem 31.17 Let M be a subspace in Rn. Then every vector a ∈ Rn can
uniquely be given in the form

a = u+ v

where u ∈M and v ∈M⊥.

Bizonyítás. Let u ∈ M denote the orthogonal projection of a onto the
subspace M . Then the vector v = a − u is orthogonal to M (verify!), and
consequently v ∈M⊥.

The unicity comes from the fact that if we have

a = u′ + v′

for another two vectors, then by subtracting the second equality from the �rst,
we get u− u′ = v− v′. This implies u− u′ ∈M and u− u′ ∈M⊥. Thus, u− u′
is orthogonal to itself, which means

0 = 〈u− u′, u− u′〉 = ‖u− u′‖2

This is only possible if u− u′ = 0 and similarly v − v′ = 0. �

Theorem 31.18 Let M be any subspace in Rn. Then

dimM + dimM⊥ = n .

Proof. Take an orthonormal basis u1, . . . , uk in the subspace M , and take
an orthonormal basis v1, . . . , vm in the subspace M⊥. Then, in view of our
previous theorem, the collection of vectors

u1, . . . , uk, v1, . . . , vm

spans the whole vector space, i.e. it is a generating system, and hence, k+m ≥ n.
On the other hand the vectors of this collection are pairwise orthogonal, so they
are linearly independent (see Theorem 31.9), therefore k+m ≤ n. We conclude
that k +m = n. �

Recitation and Exercises
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12.5, Exercises 2, 3 and 4.

3. Review: "Linear Algebra Exercises"
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The spectral theorem

32.1 Transpose of a matrix

Consider a linear transformation A of the space Rn, i.e. an n× n matrix.

De�nition 32.1 The transpose of A is the linear tranformation AT for which

〈AT y, x〉 = 〈y,Ax〉

for ecery x, y ∈ Rn.

What does the matrix AT look like? Apply the de�nition speci�cally on the
basis vectors, then

〈AT ei, ej〉 = 〈ei, Aej〉
for all indices i and j. On the righ-hand side of the equality we have aij , which
is the element in the i-th row and j-th column of A, while on the left-hand side
we get the element in the j-th row and i-th column of AT . Therefore the matrix
AT is obtained by interchanging the rows and the columns of A.

In other words, we may also say that the matrix AT is created by re�ecting
the elements of A with respect to the diagonal. Clearly, (AT )T = A.

Theorem 32.2 For any square matrix A we have

kerA =
(
imAT

)⊥

Proof. On the one hand, if a vector x is orthogonal to the subspace imAT ,
then

0 = 〈AT y, x〉 = 〈y,Ax〉
for every vector y. This is only possible if Ax = 0, and it means x ∈ kerA.

203



204 CHAPTER 32. THE SPECTRAL THEOREM

Conversely, in view of the above equality, every vector in kerA is orthogonal
to the subspace imAT �

This observation leads us to the Rank Theorem of matrices.

Theorem 32.3 (Rank theorem of matrices) For any n× n matrix A we
have

rankA = rankAT

Proof. Indeed, the previous theorem and Theorem 31.18 impy that

dim kerA+ dim imAT = n

and in view of Theorem 27.7 Tétel we get dim imA = dim imAT , that proves
our statement. �

This last theorem can also be reformulated like: in any square matrix the
number of linearly independent columns is equal to the number of independent
rows.

32.2 Orthogonal matrices

De�nition 32.4 A linear transformation S of the space Rn is called orthogonal ,
if it is invertible and S−1 = ST .

What does the matrix S look like? The equality STS = E means that the
scalar product of the i-th column of S by itself is 1, moreover, in case of i 6= j
the scalar product of the i-th and the j-th columns is zero. That tells us that
each column has a unit norm, and the di�erent columns are pairwise orthogonal.
This is where the name comes from.

Example 32.5 Let S stand for the rotation of the vectors of the plane around
the origin by the angle ϕ in positive direction. As we have seen, the matrix of
this transformation is given by

S =

[
cosϕ − sinϕ
sinϕ cosϕ

]
This matrix is easily seen to orthogonal, since both columns are of unit norm,
and the scalar product of the two columns is zero. Therefore,

S−1 =

[
cosϕ sinϕ
− sinϕ cosϕ

]
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which is precisely the matrix of the rotation by the angle −ϕ. Verify this directly
by evaluating the product STS.

Theorem 32.6 An orthogonal transformation keeps the length of the vectors.

Proof. Indeed, if S is an orthogonal transformation, then

‖Sx‖2 = 〈Sx, Sx〉 = 〈STSx, x〉 = 〈x, x〉 = ‖x‖2

for every vector x. �

Theorem 32.7 The absolute value of any eigenvalue of an orthogonal matrix
is 1.

Proof. If λ is an eigenvalue of the orthogonal transformation S, and v 6= 0
is an associated eigenvector, then

|λ|2 · ‖v‖2 = 〈λv, λv〉 = 〈Sv, Sv〉 = 〈STSv, v〉 = ‖v‖2

that implies |λ|2 = 1. �

32.3 Symmetric matrices

De�nition 32.8 A linear transformation A of the space Rn is called symmetric
if A = AT .

Obviously, in this case the matrix A is symmetric with respect to the diagonal
(that explains the name), i.e. aij = aji for all indices i and j. As a special case
of Theorem 32.2 we have the following statement.

Theorem 32.9 If A is symmetric, then

kerA = (imA)
⊥

What can we say about the eigenvalues and eigenvectors of an n × n sym-
metric transformation A? Set

P (λ) = det (A− λE)

which is the characteristic polynomial of A (of degree n).
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Theorem 32.10 The polynomial P has a real root. Consequently, the sym-
metric transformation A has a real eigenvalue and an associated eigenvector.

The proof of this theorem is fairly complicated (technically goes far beyond
this course), so we skip it. It can also be proven that (with multiplicity) P has
exactly n real roots.

Theorem 32.11 If A is a symmetric transformation, then the space Rn
possesses an orthonormal basis that consists of eigenvectors of A.

Proof. The proof is carried out by induction on the indices 1 ≤ k ≤ n. Our
preceding theorem claims that if k = 1, then the transformation A has a real
eigenvalue λ1 and an associated eigenvector v1 with ‖v1‖ = 1.

Let us assume that we have found k−1 orthonormal eigenvectors v1, . . . , vk−1
and let M denote their spanned subspace. Then A maps the subspace M⊥ into
itself (invariant), because if x ∈M⊥ is any given vector, then

〈vi, Ax〉 = 〈Avi, x〉 = 〈λvi, x〉 = 0

for every i = 1, . . . , k−1, and hence Ax ∈M⊥. If we now consider the symmetric
transformation A restricted onto the subspaceM⊥, then (in view of the previous
theorem) we can again �nd a real eigenvalue λk and an associated eigenvector
vk with ‖vk‖ = 1.

As a result of our construction, this vk is orthogonal to the eigenvectors
v1, . . . , vk−1, therefore the vectors v1, . . . , vk form an orthonormal system. �

32.4 Spectral theorem of symmetric matrices

Now we exhibit how we can �nd the diagonal form of a symmetric matrix.

Take an n× n symmetric matrix A. Theorem 32.11 claims that we can �nd
an orthonormal basis of the space Rn that consists of eigenvectors of A. Let S
denote the matrix whose columns are these eigenvectors.

Then obviously, S is an orthogonal matrix, which means S−1 = ST . Sum-
ming up, we can reformulate Theorem 29.10 speci�cally for symmetric matrices
in the following way.

Theorem 32.12 (Spectral theorem for symmetric matrices) Let A be
an n×n symmetric matrix, and consider an orthonormal basis of the space that
consists of eigenvectors of A. Let S denote the matrix of the eigenvectors. Then
S is orthogonal, and the matrix of A in the basis of the eigenvectors is

Â = STAS
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where Â is the following diagonal matrix:

Â =

 λ1 . . . 0
. . .

0 . . . λn


where the diagonal elements are the corresponding eigenvectors, respectively.

Take a look at how we can construct S for a given symmetric matrix A.

The simple situation is when the matrix A admits n di�erent eigenvalues.
Then the corresponding eigenvectors are automatically orthogonal. In this case
we construct the matrix S by simply inserting the eigenvectors with unit norm
into the columns of S.

Example 32.13 Consider the following symmetric matrix A:

A =

 2 0 2
0 −2 0
2 0 5


Find the eigenvalues �rst! The characteristic polynomial of A is given by:

P (λ) = (λ2 − 7λ+ 6)(−2− λ)

whose roots are λ1 = 1, λ2 = −2 and λ3 = 6. The corresponding eigenvectors
for di�erent eigenvalues λ can be obtained by �nding nonzero solutions of the
homogeneous system (A− λE)x = 0. These solutions are, for instance

v1 =

 2
0
−1

 v2 =

 0
1
0

 v3 =

 1
0
2


These eigenvectors are automatically orthogonal, and they should be converted
into unit norm. Finally, the orthogonal matrix S and the diagonal matrix Â
will look like:

S =

 2√
5

0 1√
5

0 1 0
− 1√

5
0 2√

5

 and Â =

 1 0 0
0 −2 0
0 0 6


Then we have

Â = STAS

and also verify this identity by performing the indicated multiplications.

The situation is slightly more complicated, when we have more than one
linearly independent eigenvector associated with an eigenvalue. Since they are
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not necessarily orthogonal, we want to use the Gram-Schmidt-procedure to make
them orthogonal. This situation is illustrated in the following example.

Example 32.14 Modify the previous example this way:

A =

 2 0 2
0 6 0
2 0 5


then the characteristic polynomial is

P (λ) = (6− λ)(λ2 − 7λ+ 6)

whose roots are λ1 = 1 and λ2 = 6, and the latter with multiplicity 2. For
the eigenvalue λ1 it is convenient to choose the eigenvector v1 in the preceding
example. For the eigenvalue λ2 = 6 the degree of freedom of the homogeneous
system (A − 6E)x = 0 is 2, thus, we have 2 linearly independent solutions, for
instance

v2 =

 1
0
2

 and v3 =

 1
1
2


However, these two vectors are not orthogonal, so we apply the Gram-Schmidt-
procedure. As a result, instead of v3 we obtain the following eigenvector u3:

u3 = v3 −
〈v3, v2〉
‖v2‖2

v2 =

 0
1
0


Ultimately, we come to the matrices

S =

 2√
5

1√
5

0

0 0 1
− 1√

5
2√
5

0

 and Â =

 1 0 0
0 6 0
0 0 6


so that

Â = STAS

that we should verify again directly by performing the indicated multiplications.

Recitation and Exercises
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ercises 1, 2 and 3.

3. Review: "Linear Algebra Exercises"



Chapter 33

Quadratic forms

33.1 Quadratic forms

A purely quadratic function de�ned on the space Rn (i.e. no linear or constant
terms) is introduced the following way.

De�níció 33.1 A function Q : Rn → R is called a quadratic form if it is given
by

Q(x) = Q(x1, . . . , xn) = a11x
2
1 + a12x1x2 + a22x

2
2 + a13x1x3 + . . .+ annx

2
n

that is a power function where all terms are purely quadratic.

For any quadratic form Q we can alway �nd an n× n matrix A so that for
every x

Q(x) = 〈x,Ax〉 (33.1)

thus, Q is given in terms of a scalar product. This is illustrated in the example
below.

Example 33.2 On the space R3 consider the quadratic form

Q(x) = Q(x1, x2, x3) = 3x21 − 4x1x2 + 2x1x3 + x22 + 6x2x3 − 5x23

Collect the coe�cients in matrix A the following way:

A =

 3 −4 2
0 1 6
0 0 −5


Verify that for this matrix A we really haveQ(x) = 〈x,Ax〉 for every x. However,
this is not the only matrix with this property. If we introduce

B =

 3 −2 1
−2 1 3

1 3 −5
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then we again have Q(x) = 〈x,Bx〉 for every x ∈ R3.

We can observe that there are in�nitely many matrices A with the equality
(33.1), but there exists only one symmetric matrix B that satis�es this property.
If any quadratic form Q(x) = 〈x,Ax〉 is given, this symmetric matrix B is
determined by the equality

B =
1

2

(
A+AT

)
and then we have

Q(x) = 〈x,Ax〉 = 〈x,Bx〉

for every x ∈ Rn.

33.2 Symmetric matrix of a quadratic form

We can formulate the last observation of the previous section for symmetric
matrices.

Theorem 33.3 Consider a quadratic form Q : Rn → R. Then there exists
exactly one n× n symmetric matrix B for which

Q(x) = 〈x,Bx〉

for every x ∈ Rn. Conversely, for every symmetric matrix B the above scalar
product de�nes a quadratic form.

This theorem basically tells us that there is a one-to-one correspondence
between quadratic forms and symmetric matrices.

Example 33.4 Consider the quadratic form

Q(x1, x2, x3) = 2x21 − 2x1x2 + 4x1x3 − x22 + 8x2x3 + 3x23

and �nd the corresponding symmetric matrix B.

Absolutely analogously to the preceding example, we bisect the coe�ents of
the mixed products, and then we come to the following symmetric matrix:

B =

 2 −1 2
−1 −1 4

2 4 3


Check that we really have Q(x) = 〈x,Bx〉 for every x ∈ R3.
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33.3 De�nite quadratic forms

For �nding minimum and maximum values of multivariate functions we will
need to examine the sign of quadratic forms. For this purpose we introduce the
following de�nition.

De�nition 33.5 We say that a quadratic form Q is

• positive de�nite, if Q(x) > 0 for every x ∈ Rn and x 6= 0,

• positive semide�nite, if Q(x) ≥ 0 for every x ∈ Rn and there exists an
x0 6= 0, with Q(x0) = 0,

• negative de�nite, if Q(x) < 0 for every x ∈ Rn and x 6= 0.

• negative semide�nite, if Q(x) ≤ 0 for every x ∈ Rn and there exists an
x0 6= 0, with Q(x0) = 0,

• inde�nite, if none of the above.

Example 33.6 For instance, the quadratic form with three varaibles

Q(x1, x2, x3) = 2x21 − 2x1x2 + x22 + 3x23

is positive de�nite, because it can be transformed into a sum of squares:

Q(x1, x2, x3) = x21 + (x1 − x2)2 + 3x23 ,

and this is positive for every vector x 6= 0.

Similarly, the quadratic form

Q(x1, x2, x3) = x21 − 2x1x2 + x22 + 3x23 = (x1 − x2)2 + 3x23

is positive semide�nite, since on the one hand Q(x) ≥ 0 for every vector x, on
the other hand Q(1, 1, 0) = 0, that is we can �nd a nonzero vector where Q take
the value zero.

Further, we can see that the quadratic form

Q(x1, x2, x3) = 2x21 − 2x1x2 + x22 − 3x23

is inde�nite, since it takes both positive and negative values. In particular,
direct substitution shows that Q(1, 1, 0) = 1 > 0, and Q(0, 0, 1) = −3 < 0.

Throughout the rest of the book we will use these concepts completely anal-
ogously for symmetric matrices associated with quadratic forms.



212 CHAPTER 33. QUADRATIC FORMS

33.4 Completing the square

The de�nite property of a quadratic form is very easy to decide if it consists
purely of square terms (there are no mixed products).

Example 33.7 Consider the following quadratic form on the space R4:

Q(x) = 5x21 + 3x22 + 9x23 + 2x24

This is clearly positive de�nite, since the sum of the squares is positive if x 6= 0.

On the other hand, the quadratic form

R(x) = 3x21 + 5x22 − 2x24

is inde�nite, because its value on the vector

x1 = 1 x2 = 1 x3 = 0 x4 = 0

is positive, while the value of R on the vectos

x1 = 0 x2 = 0 x3 = 0 x4 = 1

is negative.

Very similarly, we can check that the quadratic form

P (x) = 3x22 + x23 + x24

(ATTENTION, x1 is missing!) positive semide�nite. Indeed, on the one hand
the sum of squares is nonnegative, on the other hand there exists a vector x 6= 0,
namely

x1 = 1 and x2 = x3 = x4 = 0

wher P takes the value zero. Thus, P cannot be positive de�nite.

We summarize the observations of this example in the following theorem.

Theorem 33.8 Suppose that the quadratic form Q contains only purely square
terms:

Q(x) = b1x
2
1 + b2x

2
2 + . . .+ bnx

2
n

Based on the signs of the coe�cients, we can distinguish the following cases.

• If for every index k we have bk > 0, then Q is positive de�nite.

• If every bk ≥ 0, and there exists an idex j with bj = 0, then Q is positive
semide�nite.

• If we have both positive and negative coe�cients, then Q is inde�nite.

We can formulate analogous statements for negative, resp. nonpositive coe�-
cients. These observations lead us to examine how we can transform a quadratic
form so that it contains purely square terms (completing the square in n dimen-
sion).
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33.5 De�nite property based on eigenvalues

Consider a quadratic form Q : Rn → R and let B denote the corresponding
n× n symmetric matrix.

By the spectral theorem of symmetric matrices (previous chapter) the space
Rn has an orthonormal basis

v1, . . . , vn

that consists of eigenvectors of B that is

Bv1 = λ1v1 . . . Bvn = λnvn .

In this basis the matrix B takes the following diagonal form:

B̂ =

 λ1 . . . 0
. . .

0 . . . λn


where λ1, . . . , λn are the corresponding eigenvalues of B (not necessarily di�er-
ent). Using this diagonal matrix the quadratic form will contain purely square
terms. Indeed, for any vector y = y1v1 + . . .+ ynvn in the space

〈y, B̂y〉 = λ1y
2
1 + . . .+ λny

2
n

This leads us to the following theorem.

Theorem 33.9 Consider the quadratic form Q, and let B denote the corre-
sponding symmetric matrix, i.e.

Q(x) = 〈x,Bx〉

for every x ∈ Rn. Examine the eigenvalues of B.

• If all eigenvalues are positive, then Q is positive de�nite.

• If all eigenvalues are nonnegative and at least one of them is zero, then Q
is positive semide�nite.

• If all eigenvalues are negative, then Q is negative de�nite.

• If all eigenvalues are nonpositive and at least one of them is zero, then Q
is negative semide�nite.

• If there are both positive and negative eigenvalues, then Q is inde�nite.

Proof. We only have to prove that B and B̂ have the same de�nite property.
By keeping the usual notations, if S denotes the matrix of the eigenvectors of
B, then we have

〈y, B̂y〉 = 〈y, STBSy〉 = 〈Sy,BSy〉 = 〈x,Bx〉
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for every vector y in the space. Since S is invertible, the set of vectors x = Sy
is the whole space (i.e. the range of S is the whole space). �

Example 33.10

Specify the de�nite property of the quadratic form

Q(x) = 2x21 + 5x1x3 + 5x22 − x3x1 − x23 .

The corresponding symmetric matrix B is given by:

B =

 2 0 2
0 5 0
2 0 −1


whose characteristic polynomial is

det (B − λE) = (5− λ)(λ− 3)(λ+ 2) .

The roots (that is the eigenvalues of B) are

λ1 = 5 λ2 = 3 and λ3 = −2

We have both positive and negative eigenvalues, therefore Q is inde�nite.

Recitation and Exercises

1. Reading: Textbook-1, Sections 15.8 and 15.9.

2. Homework: Textbook-1, Section 15.8, Exercises 1, 2, 3, Section 15.9, Ex-
ercises 1, 2, 3 and 4.

3. Review: "Linear Algebra Exercises"



Chapter 34

Functions with several

variables

34.1 Partial derivatives

Consider a function f : Rn → R. We can view it as f(x) = f(x1, . . . , xn), that
is the function of the n coordinates of the vector x ∈ Rn.

De�nition 34.1 We say that f is partially di�erentiable with respect to the
k-th variable at the point x, if the function

F (t) = f(x+ tek)

is di�erentiable with respect to t at t = 0, where ek is the k-th standard basis
vector. Notation:

F ′(0) = f ′k(x) =
∂f

∂xk
(x)

is the partial derivative of f with respect to the k-th variable at the point x.

In other words, to determine the partial derivative with respect to the vari-
able k, we regard all other variables constant and di�erentiate with respect to
xk only.

Example 34.2 Consider the function

f(x, y) = 5xe−2x+3y2

on the plane. Then

∂f

∂x
(x, y) = 5e−2x+3y2 − 10xe−2x+3y2

215
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by the product di�erentiation rule, and similarly

∂f

∂y
(x, y) = 30xye−2x+3y2

at every point (x, y).

Example 34.3 When we want to �nd the partial derivative at a given point, it
is sometimes much quicker to �rst substitute the �xed coordinates of the point,
and the perform the di�erentiation. For instance, consider the function

f(x, y, z) =
√

1 + x2 + 3y2 + 2z2 · (5− x2 − y2) · e−x−2y−2z

on the three dimensional space, and �nd the partial derivative with respect to
z at the point P (2, 1, 2).

Of course, we could formally calculate the partial derivative function with
respect to z, and substitute the coordinates of the given point P . This is
immensely time consuming, and requires a lot of calculations.

A much quicker way is to �rst substitute x = 2, y = 1, then we get

f(2, 1, z) = 0

for every z. Thus
∂f

∂z
(2, 1, 2) = 0 .

Clearly, the partial derivative is zero at any other point P (2, 1, z) as well.

34.2 The derivative

De�nition 34.4 Assume that the partial derivatives of the function f : Rn →
R exist at a point x (with respect to all variables). Then the vector

f ′(x) =

[
∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

]
is called the derivative of f at x.

Sometimes this vector is also called the gradient of f at x.

Example 34.5 For example for the function f on the three dimensional space:

f(x, y, z) = 2xy
√
x2 + y2 + z2
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at the point P (2, 1, 2) we have

f ′(2, 1, 2) =

[
26

3
,

40

3
,

8

3

]
Verify this by �rst calculating the vector f ′(x, y, z), and then substituting the
coordinates of the point P (2, 1, 2).

Example 34.6 Let B be an n×n symmetric matrix and consider the quadratic
form:

Q(x) = 〈x,Bx〉 =

n∑
i=1

n∑
j=1

bijxixj

where bij is the element of the i-th row and j-th column of B. Find the partial
derivative of Q with respect to xk. In this case we have

∂Q

∂xk
(x) =

n∑
i=1

bikxi +

n∑
j=1

bkjxj

since all those terms have zero derivatives that do not contain xk. Making use
of the symmetry of B (namely bij = bji for all indices), this can be rewritten
like

∂Q

∂xk
(x) = 2

n∑
j=1

bkjxj

for every k = 1, . . . , n. On the right-hand side we exactly have the k-th coordi-
nate of the product vector 2Bx. Therefore, the derivative of the quadratic form
Q is given by

Q′(x) = 2Bx

for every x. (Please observe that this result completely complies with the deriva-
tive of a quadratic function of one variable.)

34.3 Chain-rule

Let f : Rn → R be a function with continuous partial derivatives with respect
to all variables, and let g1, . . . , gn be di�erentiable functions on the real line.
Consider the composition

F (t) = f(g1(t), . . . , gn(t))

for t ∈ R. For simplicity, introduce the notation

g(t) =

 g1(t)
...
gn(t)
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then we can write
F = f ◦ g

on the real line. Quite analogously to the elementary chain-rule (see Theorem
4.7) we can prove the following statement.

Theorem 34.7 (Chain-rule) Under the above conditions the composition
function F is di�erentiable, in particular

F ′(t) = 〈f ′(g(t)), g′(t)〉 =

n∑
k=1

∂f

∂xk
(g(t))g′k(t)

at every point t ∈ R.

Example 34.8 Consider the following function on the plane:

f(x, y) = x2 − xy − 2y2

and put
x = g1(t) = cos t moreover y = g2(t) = sin t

By applying the Chain-rule, the derivative of the composition F = f ◦g is given
by

F ′(t) = −∂f
∂x

(g(t)) sin t+
∂f

∂y
(g(t)) cos t = −4 sin t cos t+ sin2 t− cos2 t .

Verify this by a direct substitution of g1 and g2 and by performing the di�eren-
tiation. We come to the same result.

Example 34.9 Let f : Rn → R be a function so that all partial derivatives
exist and they are continuous functions. Take a vector v ∈ Rn and consider the
function

g(t) = x+ tv

where x is a �xed vector. Find the derivative of F = f ◦ g.
Obviously g′(t) = v, and the Chain-rule tells us that

F ′(t) = 〈f ′(x+ tv), v〉 .

In particular, at t = 0 we have

F ′(0) = 〈f ′(x), v〉 =

n∑
k=1

∂f

∂xk
(x)vk

where the scalars vk are the coordinates of the vector v.
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34.4 Second order partial derivatives

Whenever the partial derivative function of f : Rn → R with respect to xi is
partially di�erentiable with respect to xj at a given point x then we can consider
the second order partial derivatives of f :

∂2f

∂xi∂xj
(x) or f ′′ij(x) and in case i = j:

∂2f

∂x2i
(x) or f ′′ii(x)

The �rst is called mixed, the latter is called pure second order partial derivative.

Example 34.10 For instance, inthe case of the function

f(x, y) = x2 − 3x2y2 + 2y3

the second order partial derivatives are

∂2f

∂x∂y
(x, y) = −12xy and

∂2f

∂y2
(x) = −6x2 + 12y

for each x and y.

Example 34.11 Reconsider the function F de�ned in Example 34.9 and �nd
its second derivative F ′′(x+ tv).

Since we have

F ′(t) = 〈f ′(x+ tv), v〉 =

n∑
i=1

∂f

∂xi
(x+ tv)vi

then by carrying out the di�erentiation again, by the Chain-rule we get

F ′′(t) =

n∑
j=1

n∑
i=1

∂2f

∂xj∂xi
(x+ tv)vivj

in particular, for t = 0 we have

F ′′(0) =

n∑
j=1

n∑
i=1

∂2f

∂xj∂xi
(x)vivj

This is precisely a quadratic form of the variable v, whose matrix is

A =


∂2f
∂x2

1
(x) ∂2f

∂x1∂x2
(x) . . . ∂2f

∂x1∂xn
(x)

∂2f
∂x2∂x1

(x) ∂2f
∂x2

2
(x) . . . ∂2f

∂x2∂xn
(x)

...
...

...
∂2f

∂xn∂x1
(x) ∂2f

∂xn∂x2
(x) . . . ∂2f

∂x2
n

(x)
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By using this matrix, the above second derivative can be given in the form:

F ′′(0) = 〈v,Av〉

for every vector v.

De�nition 34.12 The above n × n matrix A is called the second derivative
of f at x. Its notation:

f ′′(x) =


∂2f
∂x2

1
(x) ∂2f

∂x1∂x2
(x) . . . ∂2f

∂x1∂xn
(x)

∂2f
∂x2∂x1

(x) ∂2f
∂x2

2
(x) . . . ∂2f

∂x2∂xn
(x)

...
...

...
∂2f

∂xn∂x1
(x) ∂2f

∂xn∂x2
(x) . . . ∂2f

∂x2
n

(x)


Sometime the matrix f ′′(x) is also called the Hesse-matrix of f at x.

34.5 Young's theorem

Example 34.13 As it is easy to see in the case of the function f(x, y) =
2x3 + 5x2y3 − ln(xy2) we have

∂f

∂x
(x, y) = 6x2 + 10xy3 − 1/x

∂f

∂y
(x, y) = 15x2y2 − 1/y2

∂2f

∂x2
(x, y) = 12x+ 10y3 − 1/x2

∂2f

∂y2
(x, y) = 30x2y − 2/y3

∂2f

∂x∂y
(x, y) =

∂2f

∂y∂x
(x, y) = 30xy2

In the example above, we see that the mixed second order partial derivatives
of f coincide. Our next theorem formulates that this is not a coincidence, it is
always true under relatively general conditions.

Theorem 34.14 (Young) If the second order partial derivatives of the func-
tion f with n variables exist, and they are continuous, then the Hesse-matrix
f ′′(x) is symmetric that is

∂2f

∂xi∂xj
(x) =

∂2f

∂xj∂xi
(x)
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for all indices i, j = 1, 2, . . . , n.

Proof. Clearly, it is enough to prove for two variables, and consider a
function f : R2 → R that ful�lls the conditions of the theorem. Take a �xed
vector v ∈ R and introduce the functions

F (t) = f(t, y + v)− f(t, y) , G(t) = f(x+ v, t)− f(x, t)

By our assumptions they are twice di�erentiable in a neighborhood of x and y
respectively, and we have the identity:

F (x+ v)− F (x) = G(y + v)−G(y) . (34.1)

By the Mean value theorem, there exists a number 0 < t < 1 with

F (x+ v)− F (x) = F ′(x+ tv)v ,

and hence, in view of the de�nition of F we get

F (x+ v)− F (x) = (f ′1(x+ tv, y + v)− f ′1(x+ tv, y)) v

= (D12f(x+ tv, y)v + o(v)) v .

Exploiting the continuity of the second derivative, we obtain

lim
v→0

F (x+ v)− F (x)

v2
=

∂2f

∂x∂y
(x, y) .

A completely similar argument gives us

lim
v→0

G(y + v)−G(y)

v2
=

∂2f

∂y∂x
(x, y) .

The identity (34.1) immediately implies

∂2f

∂x∂y
(x, y) =

∂2f

∂y∂x
(x, y) ,

and we conclude that the second derivative is a symmetric matrix. �

Example 34.15 Consider the function f : R3 → R de�ned by

f(x, y, z) = 2x2y + xyz − y2z2

Check that the second derivative at an arbitrarily given point (x, y, z)

f ′′(x, y, z) =

 4y 4x+ z y
4x+ z −2z2 x− 4yz
y x− 4yz −2y2


is a symmetric matrix.
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Example 34.16 Find the second derivative of the quadratic form

Q(x) = 〈x,Bx〉

where B is a given n× n symmetric matrix.

On the one hand we have Q′(x) = 2Bx, on the other hand this expression
is linear, therefore the (symmetric) Hesse-matrix is

Q′′(x) = 2B

at every point x.

Recitation and Exercises

1. Reading: Textbook-1, Sections 15.3, 15.4, 15.5, 15.6, 16.1 and 16.2

2. Homework: Textbook-1, Section 15.5, Exercises 1, 2, 3, 4, 5, 6, Section
16.1, Exercises 1, 2, 3, 4, 5 and 6.

3. Review: "Linear Algebra Exercises"
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Local extrema

35.1 Local extrema

De�nition 35.1 The unit ball with center at the origin in the space Rn is
de�ned by

B = {x ∈ Rn : ‖x‖ ≤ 1}
Quite similarly, a ball with center at a ∈ Rn and with radius r > 0 is given by

a+ rB = {x ∈ Rn : ‖x− a‖ ≤ r}

Consider a function f : Rn → R. A point a in the domain of f is said to be
a local minimum point of f , if there exists an ε > 0 so that

f(x) ≥ f(a)

at every point x of the domain with x ∈ a+ εB (that is ‖x− a‖ ≤ ε).
The de�nition of a local maximum point can be formulated analogously. We

speak about global minimum (or maximum) if the inequality holds on the entire
domain.

35.2 First order necessary condition

In the following we assume that all partial derivatives of the function f : Rn → R
exist and they are continuous in a neighborhood of the point a.

Theorem 35.2 If a ∈ Rn is a local minimum point of f , then

∂f

∂x1
(a) = . . . =

∂f

∂xn
(a) = 0 .
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Proof. Consider the basis vectors ek ∈ Rn and set

F (t) = f(a+ tek) .

On the one hand, F has a local minimum point at t = 0, on the other hand, F
is di�erentiable by the Chain-rule, namely

F ′(t) = 〈f ′(a+ tek), ek〉 .

Consequently, we get

0 = F ′(0) = 〈f ′(a), ek〉 =
∂f

∂xk
(a)

for all indices k = 1, . . . , n. �

The above theorem tells us that we can �nd all extreme points of a function
in the solution set of a system of equations for partial derivatives. However, this
is only a necessary condition (just like in the one variable case). For instance,
consider the function

f(x, y) = x3y2

then one solution to the system f ′1(x, y) = f ′2(x, y) = 0 is (x, y) = (0, 0). Then

f(0, 0) = 0

which is neither a minimum nor a maximum. Indeed, in any neighborhood of
the origin the function f takes both positive and negative values.

We need second order (necessary and/or su�cient) conditions as well.

35.3 Second order necessary condition

In this section we assume that f : Rn → R is twice continuously di�erentiable
in a neighborhood of the point a.

Theorem 35.3 Let us suppose that a is a local minimum point of f . Then
the Hesse-matrix of f at a is positive semide�nite.

Proof. Take any vector v ∈ Rn and introduce the function

F (t) = f(a+ tv)

By the assumptions F is twice continuously di�erentiable, and if a is a local
minimum point of f , then t = 0 is a local minimum point of F , which implies
F ′′(0) ≥ 0. This means

0 ≤ F ′′(0) = 〈f ′′(a)v, v〉
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Since the vector v ∈ Rn was chosen arbitrarily, we conclude that the Hesse-
matrix is positive semide�nite. �

This result does not give a su�cient condition (only necessary) for the min-
imum. It is enough just to think of the function

f(x, y) = x5 + y4

At the point (0, 0) both partial derivatives are zero, and the Hesse-matrix is
the zero mátrix (which is positive semide�nite), but the origin is not a local
minimum point.

We can formulate an analogous statement for the local maximum, in that
case the Hesse-matrix is negative semide�nite.

35.4 Su�cient condition for local extrema

In this section we assume again that f : Rn → R is a function, whose second
order partial derivatives exist, and they are continuous in a neighborhood of the
point a.

Theorem 35.4 Let us suppose that at the point a all �rst order partial deriva-
tives of f are zero, and the Hesse-matrix f ′′(a) is positive de�nite. Then a is a
local minimum points of f .

Of course, the negative de�nite property of f ′′(a) means local maximum.

The proof of this theorem goes technically somewhat beyond this course,
and we skip it (it is not too hard though). We note however that it might be
tempting to think that our assumptions imply that the function

F (t) = f(a+ tv)

has a local minimum at t = 0 for every vector v. Indeed, the su�cient condition
for this is that F ′′(0) > 0 for every v 6= 0, which is equivalent to f ′′(a) being
positive de�nite.

However, the trouble is that the fact that F has a local minimum at t = 0
for every vector v does not imply the existence of the local minimum of f at a.
This unfortunate phenomenon is illustrated in the following example.

Example 35.5 Consider the following function on the plane:

f(x, y) =

 x2 if y = x2 and x > 0
−x2 if y = x2 and x < 0
x2 + y2 elsewhere

Clearly, the function f does not have a local minimum at the origin, because in
any neighborhood of the origin it takes both positive and negative values.
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However, if any nonzero planar vector v is given, then the function

F (t) = f((0, 0) + tv)

has a strict local minimum at t = 0. Indeed, any straight line passing through
the origin has a segment containing the origin that does not intersect the
parabola with equation y = x2.

It is highly recommended to create a picture!

35.5 Finding the extreme values

If we want to �nd the minimum and maximum points of a function with n
variables, we have to perform the following steps:

1. Find all partial derivatives.

2. Make them equal to zero, and solve the system of equations.

3. At every such point determine the Hesse-matrix.

4. If at a point the Hesse-matrix is positive de�nite, then it is a local mini-
mum point.

5. If at a point the Hesse-matrix is negative de�nite, then it is a local maxi-
mum point.

6. If at a point the Hesse-matrix is inde�nite, then it is not a local extremum
(so-called "saddle point").

7. If at a point the Hesse-matrix is semide�nite, then further examinations
are needed. (Based on the derivatives this case is undecided.)

Example 35.6 Consider the following function on the plane:

f(x, y) = x4 + y2

The origin is the only critical point where both partial derivatives are zero. The
Hesse-matrix at the origin is

H =

[
0 0
0 2

]
which is obviously positive semide�nite. Clearly, the origin is the (global) min-
imum point of the function.

If we slightly modify the function like:

f(x, y) = −x4 + y2
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then the origin is still the only critical point, and the corresponding Hesse-matrix
remains identical. However, the origin is no longer an extreme point, since in
any neighborhood of the origin the function takes both positive and negative
values. Such a point is called a saddle point of f .

Példa 35.7 Find all extreme values of the function:

f(x, y, z) = (x2 − 4y)e−(x+y+z
2)

By making the partial derivatives equal to zero, we get the following system of
equations:

f ′1(x, y, z) = (2x− x2 + 4y)e−(x+y+z
2) = 0

f ′2(x, y, z) = (−4− x2 + 4y)e−(x+y+z
2) = 0

f ′3(x, y, z) = −2z(x2 − 4y)e−(x+y+z
2) = 0

whose only solution is (x, y, z) = (−2, 2, 0)

Apply the second order condition. The Hesse-matrix is:

f ′′(−2, 2, 0) =

 6 4 0
4 4 0
0 0 8


and the corresponding quadratic form

6x21 + 8x1x2 + 4x22 + 8x23 = 2x21 + 4(x1 + x2)2 + 8x23 .

is positive de�nite. Consequently, the function f has a local minimum at the
critical point (−2, 2, 0).

35.6 The special case of two variables

Our second order su�cient condition for an extremum can be reformulated for
two variables in an "easy to use" way. The idea is that for two variables the
de�nite property can easily be veri�ed.

Let f : R2 → R be a function that ful�lls the assumptions of Theorem 35.4,
and take a point a ∈ R2 where f ′(a) = 0 (i.e. a critical point). The Hesse-matrix
of f at this point is

f ′′(a) =

[
f ′′11(a) f ′′12(a)
f ′′21(a) f ′′22(a)

]
The characteristic polynomial of the Hesse-matrix is given by

P (λ) = λ2 − (f ′′11(a) + f ′′22(a))λ+ f ′′11(a)f ′′22(a)− f ′′12(a)2
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where we have taken into account the symmetry of the Hesse-matrix.

As we know, this quadratic polynomial has purely real roots (we refer to
Theorem 32.11). By making use of the Viéte-formula, we can summarize our
observations in the statement below.

Theorem 35.8

• If f ′′11(a)f ′′22(a) − f ′′12(a)2 > 0, then the critical point a is a local extreme
point of the function f . This extreme point is a

� local minimum point, if f ′′11(a) > 0.

� local maximum point, if f ′′11(a) < 0.

• It is not an extreme point (saddle point), if f ′′11(a)f ′′22(a)− f ′′12(a)2 < 0.

• Undecided, if f ′′11(a)f ′′22(a)− f ′′12(a)2 = 0.

In the latter circumstances we need further investigations.

Recitation and Exercises

1. Reading: Textbook-1, Chapter 17.

2. Homework: Textbook-1, Section 17.4, Exercises 1, 2, 3, 4, 5, 6, 7, 8 and
9.

3. Review: "Linear Algebra Exercises"



Chapter 36

Least squares method,

regression

In this section we exhibit an approximation method that provides the mathe-
matical background for regression. A detailed discussion of regression is given
in the statistics course.

36.1 Least squares method

Let us suppose that for the outcome of an experiment we carried out n obser-
vations, and at the di�erent points x1, . . . , xn we obtained the values y1, . . . , yn.
We have the idea that a linear model can be �tted on these experimental data.
In other words, we are looking for a straight line with the equation y = mx+ b
so that

mx1 + b = y1 . . . mxn + b = yn

In reality the data do not necessarily match our hypotheses, therefore, most of
the time such a straight line does not exist. If we consider this as a "measure-
ment error" and we are satis�ed with a "good" approximation, then we may
look for a line that �ts the data the best possible way. By a good approximation
we mean that the expression

f(m, b) =

n∑
i=1

(mxi + b− yi)2

is minimal. This approximation procedure is called the least squares method .

ATTENTION! Why do not we use simply the sum of the gaps mxi − yi?
In fact, we could use the sum of the absolute values |mxi − yi|. This would be
theoretically absolutely correct, but it would make our computations a lot more
di�cult.

229
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36.2 Analytic solution

Consider the function

f(m, b) =

n∑
i=1

(mxi + b− yi)2 (36.1)

with given values x1, . . . , xn and y1, . . . , yn respectively, and �nd the values of
m and b so that f is a minimum.

By making the partial derivatives equal to zero, we get

∂f

∂m
(m, b) =

n∑
i=1

2xi(mxi + b− yi) = 0

∂f

∂b
(m, b) =

n∑
i=1

2(mxi + b− yi) = 0

This leads us to the following system of equations:

n∑
i=1

xiyi = m

n∑
i=1

x2i + b

n∑
i=1

xi

n∑
i=1

yi = m

p∑
i=1

xi + bn (36.2)

and from this linear system the solutions m and b can be determined uniquely.
It is obvious that we really get a minimum point, since the function f is given
as a sum of complete squares.

We just note that if we calculate the second order partial derivatives, then
the Hesse-matrix of f is constant (independent of m and b), in particular

f ′′(m, b) =

[ ∑n
i=1 2x2i

∑n
i=1 2xi∑n

i=1 2xi 2n

]
We can easily see that the Hesse-matrix is positive de�nit, since the charateristic
equation

det (A− λE) = λ2 − λ

(
n∑
i=1

2x2i + 2n

)
+ 2n

n∑
i=1

2x2i −

(
n∑
i=1

2xi

)2

= 0

has only positive roots. Indeed, by exploiting the inequality between the arith-
metic and quadratic means (averages) we have

1

n

n∑
i=1

xi <

√√√√ n∑
i=1

1

n
x2i

since the numbers xi are di�erent. This implies that the constant term of the
above quadratic equation is positive.
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36.3 Algebraic solution

The minimum point that we obtained in the previous section, can be found by
using purely algebraic machinery as well. If we introduce the notations

A =

 x1 1
...

...
xn 1

 , y =

 y1
...
yn

 , z =

[
m
b

]

then we can easily verify that

Az − y =

 mx1 + b− y1
...

mxn + b− yn


Therefore, the function f(m, b) at (36.1) can be written in the form:

f(z) = ‖Az − y‖2

We are looking for a vector z so that the distance between the vectors Az and
y is the smallest possible. In other words: we are looking for a vector in the
subspae imA that is closest to the vector y. Obviously, this distance is the
lowest possible if and only if the vector Az − y is orthogonal to the subspace
imA.

The orthogonality means that for both basis vectors ei of the space R2

〈Az − y,Aei〉 = 0 .

By a slight modi�cation we get〈
ATAz, ei

〉
=
〈
AT y, ei

〉
for i = 1, 2, which implies

ATAz = AT y .

Here the matrix ATA is clearly invertible, since it is a 2× 2 matrix with a rank
of 2. Consequently, [

m
b

]
= z =

(
ATA

)−1
AT y .

By carrying out the indicated matrix operations we can easily check that we
retain the solution of the linear system (36.2). For practicing, perform this
calculation.

36.4 Regression

Let X and Y be random variables, where the range of X is the set {x1, . . . , xn}.
Assume that observed conditional expectations of the variable Y at the points
x1, . . . , xn are given by

yi = E(Y |X = xi)
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where P (X = xi) 6= 0 for all indices i = 1, . . . , n.

By locating the points (xi, yi) in the coordinate system, we may have the
hypothesis that they approximately lie on the graph of a given function. If for
instance, this function is a straight line with equation

y = mx+ b

then we want to choose the unknown parameters m and b so that this approxi-
mation should be the best possible. This means that the expected value

E
(
(mX + b− Y )2

)
is a minimum (the smallest possible). For this purpose consider the function

g(m, b) = E
(
(mX + b− Y )2

)
= E

(
m2X2 + 2bmX + b2 − 2mXY − 2bY + Y 2

)
= m2E(X2) + 2bmE(X) + b2 − 2mE(XY )− 2bE(Y ) + E(Y 2)

For the partial derivatives we have the following equations

∂g

∂m
(m, b) = 2mE(X2) + 2bE(X)− 2E(XY ) = 0

∂g

∂b
(m, b) = 2mE(X) + 2b− 2E(Y ) = 0

This linear system has a unique solution:

m =
E(XY )− E(X)E(Y )

E(X2)− E(X)2
=
Cov(X,Y )

V ar(X)

and

b = E(Y )− Cov(X,Y )

V ar(X)
E(X)

It is easy to see that we really get a minimum point, since g is the expansion of
a complete square.

ATTENTION!

Verify that the Hesse-matrix of g is positive de�nite! (And incidentally,
independent of the variables m and b.)

This function y = mx+b is called the linear regression function. In statistics
other types of regression functions (for instance quadratic, or more complicated)
are also used.

Recitation and Exercises

1. Reading: Textbook-1, Chapter 17 and Textbook-2, Sections 11.1, 11.2 and
11.3.

2. Homework: Textbook-2, Exercises 11.1 through 11.14.

3. Review: "Linear Algebra Exercises"
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